Mwrf 2530 Wakeuppromo 0

Remote Wake-Up System Saves Standby Power

Dec. 2, 2016
A remote wake-up system operating from 2.4 to 2.6 GHz is designed with low-cost components to help save the standby power of commercial and industrial electronic products.

Increasing numbers of electronic devices implies increasing amounts of consumed electrical power and a greater need to conserve power in electronic devices. For that reason, Faycel Fezai, a hardware engineer with Thales Air Systems, France, and co-researchers from various locations throughout France, propose an efficient RF-based energy-transfer system and RF-to-dc conversion circuit and switch with the ability to “wake up” commercial and industrial electronic devices as needed. The technology employs an integrated emitter and receiver working in the industrial-scientific-medical (ISM) frequency range from 2.40 to 2.48 GHz.

The researchers set an energy-consumption limit at 1 mW for electronic devices. They based their system solution on antennas with easily tuned radiation efficiency and a receiver without a direct power supply that has a rectifying circuit optimized for low RF power levels. In addition, the solution is coupled to a self-maintained switch. The system’s intent is to be able to wake up an electronic device from a distance of 5 m by means of some form of remote-control device.

The emitter is based on a commercial transceiver from Texas Instruments used with a lithium-polymer (LiPo) battery. The transceiver’s output is connected to a commercial power amplifier with 29-dB gain and then to an antenna.

Although the amplifier normally exhibits power consumption of 600 mA, the RF emissions for the transceiver system are based on a 10% duty cycle consisting of a 20-ms burst repeated three times during a 200-ms period. The researchers note that this particular amplifier and duty cycle were chosen for the benefits of gain, energy consumption, and cost in a commercial marketplace, with an expected operating lifetime of two years.

A parasitic-element antenna was developed for the transceiver using the same commercial printed-circuit-board (PCB) material as the transceiver circuitry. Adding surface-mount-technology (SMT) components to the PCB tuned the antenna pattern; then, commercial computer-aided-engineering (CAE) software programs, such as MATLAB from MathWorks and CST Microwave Studio from Computer Simulation Technology, were used to design and optimize the antenna. The compact antenna aided the wake-up circuit’s effectiveness by means of a maximum gain of 5.75 dBi across a 200-MHz bandwidth from 2.4 to 2.6 GHz in the main radiated direction of interest (0°).

See “Reducing Electronic Device Standby Power Using a Remote Wake-Up System,” IEEE Antennas & Propagation Magazine, Vol. 58, No. 5, October, 2016, p. 66.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.