Latest from Systems

272875076 © Bruno Coelho | Dreamstime.com
291067564 © Antony Rodriguez | Dreamstime.com
280087088 © Yuriy Nedopekin | Dreamstime.com
dreamstime_Rootstocks_185240973
Soundwaves Dreamstime Rootstocks Promo 185240973
Soundwaves Dreamstime Rootstocks Promo 185240973
Soundwaves Dreamstime Rootstocks Promo 185240973
Soundwaves Dreamstime Rootstocks Promo 185240973
Soundwaves Dreamstime Rootstocks Promo 185240973
Tawanlubfah, Dreamstime
11 Tawanlubfah 1dreamstime Myths
11 Tawanlubfah 1dreamstime Myths
11 Tawanlubfah 1dreamstime Myths
11 Tawanlubfah 1dreamstime Myths
11 Tawanlubfah 1dreamstime Myths

Modular Synths that Meet Today’s Tough Specs (.PDF Download)

Aug. 20, 2019
Modular Synths that Meet Today’s Tough Specs (.PDF Download)

Frequency synthesizers provide the RF/microwave signals so essential to the operation of many electronic defense systems. They have steadily evolved over time to provide wider bandwidths through the millimeter-wave (mmWave) frequency range, meeting growing demands for smatter step sizes (frequency resolution) with lower phase noise and faster frequency switching speeds. Recent trends for miniaturization and modularity have increased the flexibility when integrating a frequency synthesizer into a system, especially where size, weight, and power (SWaP) are concerns for smaller systems like portable radios and unmanned aerial vehicles (UAVs).

The process of specifying a synthesizer has not changed—it’s still driven by the requirements of an application and comparing key performance parameters, such as frequency range, tuning resolution, frequency switching speed, phase noise, harmonics, and SWaP. Whether in a 19-in. rack-mount assembly or a more compact module, frequency synthesizers for military and aerospace applications must perform when needed, no matter how severe the temperature, shock, and vibration conditions.