Lockheed Martin
Denewsmay6 2 Promo Figure
Denewsmay6 2 Promo Figure
Denewsmay6 2 Promo Figure
Denewsmay6 2 Promo Figure
Denewsmay6 2 Promo Figure

Hubble Still Scanning Space After 30 Years

May 5, 2020
The Hubble Space Telescope has gone from production to orbit and registered more than 4 billion miles in orbit and 1.4 million observations of deep space during its 30 years in flight.

Space has often been called “the final frontier” for a human species with grandiose long-term plans to colonize the universe. Before settlements can be initiated as “nearby” as the Moon or Mars, however, more must be known about space and, for at least 30 years, the Hubble Space Telescope (HST) has delivered images of deep space far beyond this solar system. The technological marvel was designed and constructed at the Lockheed Martin Space site in Sunnyvale, CA (Fig. 1) as part of efforts to learn more about what awaits the human species in deep space.

The HST was originally designed as a space-based orbiting observatory that would provide at least 15 years of high-performance service. Several maintenance visits by space-shuttle astronauts have been necessary during the earlier years of its lifetime to repair malfunctioning subsystems. As the telescope ages it continues to perform well; additional service missions have not been planned and may not be needed due to the ingenuity and adaptability of some of the space telescope’s developers.

For example, the HST is constructed with six gyroscopes that position the telescope in terms of desired direction and area of deep space to scan. The total number of gyroscopes was designed with some redundancy, assuming that the space telescope could be positioned accurately even when only three of the six gyroscopes were functional. Unfortunately, as gyroscopes are electro-mechanical subsystems subject to extreme wear, especially over an extended service life of more than 15 years, maintaining even three of the six gyroscopes in full operational condition appeared to be unlikely to the HST project engineers at Lockheed Martin. So, the engineers needed another approach to positioning the space satellite.

A steering solution developed by a team led by Mike Wentz, HST lead optical telescope system engineer uses available gyros in combination with the fine guidance sensors (FGS) on the Hubble (Fig. 2). By working both devices together, the HST can be steered with as little as one gyro. “Essentially, we created a hybrid mode,” Wentz explained. “The gyros are the front-seat drivers—they do most of the work getting the telescope into position. Once that’s done, the fine guidance sensors step in to keep Hubble perfectly still and locked on the guide starts.” The method has been tested and is ready for use to keep the HST operational well beyond its current 30-year lifetime.

Lockheed Martin, lockheedmartin.com 

Sponsored Recommendations

Frequency Modulation Fundamentals

March 14, 2024
The development of crystal-clear FM communications was an innovation of genius and toil. Utilized today in applications such as radar, seismology, telemetry and two-way radios...

44 GHz Programmable Signal Generator

March 14, 2024
The Mini-Circuits SSG-44G-RC is a 0.1 to 44 GHz signal source with an RF output range of -40 to +17 dBm with fine resolution. This model supports CW and pulsed (? 0.5 ?s) outputs...

Webinar: Introduction to OTA Measurement for mmWave and Sub-THz

Feb. 19, 2024
Join Jeanmarc Laurent, a leading expert from MilliBox, for an exclusive live webinar showcasing a complete Over-the-Air (OTA) testing system setup. In this immersive session, ...

Using a CMT VNA with Socket Server

Feb. 19, 2024
This application note describes use of a software application CMT Socket Server which is distributed and supported by Aphena Ltd. Please email [email protected] regarding purchase...