Peter Gammel, CTO, Skyworks Solutions, Inc.
There will be a need for new RF technologies to address signal transmission, conditioning, filtering, tuning, voltage regulation, battery-charging, and packaging, creating a perfect storm of complexity. In short, the goal of a 10X increase in battery life, simultaneous output power increase for enhanced cell user experience, and linearity for 5G new radio data rates have resulted in a re-evaluation of the entire RF transmit chain.
As the second phase of 5G takes us into millimeter-waves, a new suite of technologies will be ramped up to augment the use of gallium-arsenide (GaAs) heterojunction-bipolar-transistor (HBT), silicon-on-insulator (SOI), and acoustic-wave filters.
Can you tell us a little bit about expected filter technology solutions for 5G—especially at millimeter-wave frequencies?
The initial 5G rollout, or below 6 GHz, will increase complexity in the RF chain, including an explosion in the number and types of filters. With filters, as with semiconductors, complexity and product footprint are driving a wide range of innovative system architectures and packaging technologies. By looking at the entire RF front-end as a system, it will enable some exciting and differentiated ways of resolving transmit-chain efficiency, linearity, and isolation.
The primary challenges associated with utilizing the millimeter-wave spectrum have to do with the path loss in comparison to signals using spectrum below 6 GHz. This path loss impacts power-amplifier (PA) efficiency on the transmit side and noise figure on the receive side. With today’s technologies, these both lead to reduced battery life. Given the proliferation of frequency bands and the addition of LTE, the need for filters that address the low-, mid-, and high-band performance requirements for emerging 5G applications has never been higher.
As 5G migrates to millimeter-waves, acoustic filtering is no longer an option. The good news is that the size and performance of traditional dielectric, ceramic, and transmission-line filters used in infrastructure applications today become appropriate for many handheld and battery-powered devices. The same need for scaling will permit the use of steered beam and other antenna-array technologies in consumer electronics.
Lastly, what is Skyworks doing now—and plans on doing in the future—in terms of 5G?
Our innovative analog semiconductors are already enabling connectivity across new and previously unimagined applications in mobile and the Internet of Things (IoT). You can find our solutions in numerous markets spanning the connected home, car, wearables, military, industrial, and cellular infrastructure.
In 5G, complexity will grow and system architectures will require significantly more powerful connectivity engines to ensure that intense performance challenges are realized. As a leader in unwiring the planet, we plan to continue leveraging our extensive technology breadth and depth, strategic partnerships with all leading smartphone and IoT customers, and differentiated architectures to deliver 5G solutions that lead to unmatched levels of integration and performance. Our ambitious vision of connecting everyone and everything, all of the time, has never been more relevant and exciting.