1021 Mw Movandi Paam 5 G Array Promo 617952f6988ae

mmWave 5G PAAM, Made in Bulk CMOS, Sports 300+ Antennas for Infrastructure Buildout

Oct. 27, 2021
Movandi demonstrates a high-performance phased-array antenna module using TSMC CMOS technology.

The Overview

Movandi’s phased-array antenna module (PAAM) design, which comprises over 300 antennas, leverages the scale and cost efficiency of TSMC’s bulk CMOS technology to deliver breakthrough performance. Movandi’s phased-array antenna module delivers a suitable combination of output power, cost, antenna count, and energy efficiency for mmWave infrastructure applications.

Who Needs It and Why?

For those enmeshed in the buildout of mmWave 5G infrastructure, this demonstration by Movandi of an advanced PAAM design based on TSMC’s bulk CMOS process is a watershed moment. CMOS technology provides industry-leading cost, effective isotropic radiated power (EIRP), and DC efficiency when compared to other options. Movandi’s CMOS-based PAAM has the potential to blend a low price point, moderate output power per port, optimal antenna count, and excellent thermal density into an overall solution for end-product design.

Under the Hood

The PAAM incorporates Movandi’s production-shipping beamformer, up/down converter, and synthesizer chips. Deep application RAMs on all Movandi chipsets allow programmable schedules and a large beam-book for dynamic control and fast beam steering. A symbol-level PAAM controller enables accurate time-division duplexing (TDD), AGC, and beamforming, as well as power-saving modes that include symbol-level power save and tapering.

The Movandi PAAM was developed to support a custom O-RAN radio unit product and is capable of >59 dBm EIRP per beam. The PAAM is configurable in several modes of operation including 2T2R, 4T4R, and 8T8R. The PAAM achieves this EIRP while maintaining better than 4% error-vector magnitude (EVM).

About the Author

David Maliniak | Executive Editor, Microwaves & RF

I am Executive Editor of Microwaves & RF, an all-digital publication that broadly covers all aspects of wireless communications. More particularly, we're keeping a close eye on technologies in the consumer-oriented 5G, 6G, IoT, M2M, and V2X markets, in which much of the wireless market's growth will occur in this decade and beyond. I work with a great team of editors to provide engineers, developers, and technical managers with interesting and useful articles and videos on a regular basis. Check out our free newsletters to see the latest content.

You can send press releases for new products for possible coverage on the website. I am also interested in receiving contributed articles for publishing on our website. Use our contributor's packet, in which you'll find an article template and lots more useful information on how to properly prepare content for us, and send to me along with a signed release form. 

About me:

In his long career in the B2B electronics-industry media, David Maliniak has held editorial roles as both generalist and specialist. As Components Editor and, later, as Editor in Chief of EE Product News, David gained breadth of experience in covering the industry at large. In serving as EDA/Test and Measurement Technology Editor at Electronic Design, he developed deep insight into those complex areas of technology. Most recently, David worked in technical marketing communications at Teledyne LeCroy, leaving to rejoin the EOEM B2B publishing world in January 2020. David earned a B.A. in journalism at New York University.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications