Schweber Prom Onew

Lab-Based “Li-Fi” Link Exceeds 7 Gb/s Using Blue Micro LED

Sept. 22, 2020
Taking advantage of a blue GaN micro LED, researchers succeeded in operating a free-space optical link at over 7 Gb/s, possibly functioning as a precursor of a super-speed Li-Fi type link.

This article appeared in Electronic Design and has been published here with permission.

As an optically based complement to RF-based Wi-Fi, Li-Fi (light fidelity) offers distinct attributes including potentially extremely high throughout over limited distances and immunity from (and non-sourcing of) EMI/RFI. One other characteristic of an optical link can be considered either a benefit or a drawback: Its line-of-sight path provides outstanding immunity to eavesdropping and hacking, but also limits user mobility.

Adoption of Li-Fi in the marketplace has been very limited thus far. However, there’s an industry association that provides standards and support, and there’s the potential for using a single LED bulb/photoreceptor unit as both light source and Li-Fi node (see Resources below).

Researchers, of course, see pushing the envelope of optical-based data links as an area of great interest. A team at Leti (a research institute of CEA Tech, Grenoble, France) has achieved a visible light communication (VLC) test-bed transmission at 7.7 Gb/s (significantly exceeding the previous 5.1-Gb/s record) using a single, 10-µm diameter, gallium-nitride (GaN) blue micro LED (Fig. 1). (In general, a smaller emissive area of the LED yields a higher bandwidth—here, 1.8 GHz in the institute’s single-blue micro LED project.)

In addition to the micro LED, the team also developed an advanced multi-carrier modulation scheme combined with digital signal processing to achieve their results. This high spectrum-efficiency waveform was transmitted by the single LED, received on a high-speed photodetector, and demodulated using a direct sampling oscilloscope (Fig. 2).

This class of experimental test bed requires many electro-optical components as well as test-and-measurement equipment for support, including these:

While the Light Communications Alliance (created in 2019) is intended to encourage the industry to implement standardization and promote interoperability between Li-Fi systems from different manufacturers, CEA-Leti is planning to continue its research in two areas:

  • Developing a better understanding of the electrical behavior of single LEDs in high-frequency regimes and the link between bandwidth and electromigration patterns.
  • Investigating techniques to improve the range and/or increase the data rate using a matrix of multi-LED emissive devices. This requires adapting the waveform generation as well as a CMOS interposer to drive the matrix on a pixel basis.

LiFi Resources

Sponsored Recommendations

Guide to VNA Automation in MATLAB Using the TCP Interface

April 19, 2024
In this guide, advantages of using MATLAB with TCP interface is explored. The how-to is also covered for setting up automation language using a CMT VNA.

In-Circuit Antenna Verification

April 19, 2024
In this video, Brian Walker, Senior RF Design Engineer at Copper Mountain Technologies, shows how there can be significant variation of the performance of a PCB-mounted antenna...

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...