raytheonpromo.jpg

Raytheon Enhances GaN for the USAF

Nov. 10, 2016
A follow-on contract from the USAF enables Raytheon Co. to push the capabilities of its GaN microwave semiconductor fabrication process.
Raytheon Co. recently received a $14.9 million contract from the United States Air Force Research Laboratory and the Office of the Secretary of Defense to further enhance its process for fabricating discrete devices and monolithic integrated circuits (ICs) based on gallium-nitride (GaN) semiconductor materials. These wide-bandgap materials are capable of producing high signal power levels at microwave through millimeter-wave frequencies with relatively high efficiency.

The new contract agreement follows a previous GaN Title III contract, completed in 2013, with the additional investment intended to improve performance, reliability, and yield of the high-power microwave semiconductors. The high-power GaN devices are used in a wide range of defense circuits and systems, including radars as well as the U.S. Navy’s Air and Missile Defense Radar and Next Generation Jammer.

Colin Whelan, vice president of advanced technology in Raytheon's Integrated Defense Systems business unit, explains: “We have only scratched the surface when it comes to harnessing the game-changing power that gallium nitride technology can bring to military applications.” For the progress that the new contract allows, he notes: “This contract will build on the 17-year, $200-plus million investment Raytheon has made in maturing GaN. Over the next two years, we will further refine our GaN process to push the limits of radio frequency performance while maintaining or increasing yield and reliability.”

The first demonstrator of this technology will be incorporated into Raytheon Space and Airborne Systems' Next Generation Jammer program, which is scheduled for low-rate initial production in 2018.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...