SoC Makes Breakthrough

March 18, 2010
For Global Foundriesin conjunction with ARMSpain's mobile-communications techfest offered an opportunity to unveil a system-on-a-chip (SoC) technology for powering next-generation wireless products and applications. The chip manufacturing ...

For Global Foundriesin conjunction with ARMSpain's mobile-communications techfest offered an opportunity to unveil a system-on-a-chip (SoC) technology for powering next-generation wireless products and applications. The chip manufacturing platform involves the merging of two Global Foundries process variants: the 28-nm super-low-power (SLP) process for mobile and consumer applications and 28-nm high-performance (HP) process. Compared to 40/45-nm technologies, the 28-nm process with Gate-First HKMG technology is projected to enable a 40 percent increase in computing performance, a 30 percent decrease in power consumption, and a 100 percent increase in standby battery life.

The ARM and Global Foundries SoC platform is based on the ARM Cortex-A9 processor, optimized ARM physical intellectual property (IP), and Global Foundries' 28-nm Gate-First High-K Metal Gate (HKMG) process. Together, ARM and Global Foundries expect to enable manufacturers of smartphones, smartbooks, tablets, and more to address increasing design and manufacturing complexities while reducing time to volume production at mature yields.

The company claims that its 28-nm process with Gate- First HKMG technology provides significant performance gains over the previous generation 40/45-nm technologies. Current estimates say that 28 nm with HKMG will provide approximately 40 percent higher performance within the same thermal envelope.

Global Foundries expects to start production on these next-generation technologies in the second half of this year at its fab in Dresden, Germany. Currently, Global Foundries has five 200-mm fabs and one 300-mm fab in Singapore as well as one leading-edge 300-mm-fab complex in Dresden, Germany. The firm has an aggressive production capacity plan that includes the expansion of Fab 1 in Dresden and Fab 7 in Singapore as well as construction of a new 300-mm facility in Saratoga County, NY.

About the Author

Paul Whytock | Editor-in-Chief

Paul Whytock is European Editor for Microwaves & RF and European Editor-in-Chief for Electronic Design. He reports on the latest news and technology developments in Europe for his US readers while providing his European engineering audience with global news coverage from the electronics sector. Trained originally as a design engineer with Ford Motor Co., Whytock holds an HNC in mechanical, electrical, and production engineering.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications