SoC Makes Breakthrough

March 18, 2010
For Global Foundriesin conjunction with ARMSpain's mobile-communications techfest offered an opportunity to unveil a system-on-a-chip (SoC) technology for powering next-generation wireless products and applications. The chip manufacturing ...

For Global Foundriesin conjunction with ARMSpain's mobile-communications techfest offered an opportunity to unveil a system-on-a-chip (SoC) technology for powering next-generation wireless products and applications. The chip manufacturing platform involves the merging of two Global Foundries process variants: the 28-nm super-low-power (SLP) process for mobile and consumer applications and 28-nm high-performance (HP) process. Compared to 40/45-nm technologies, the 28-nm process with Gate-First HKMG technology is projected to enable a 40 percent increase in computing performance, a 30 percent decrease in power consumption, and a 100 percent increase in standby battery life.

The ARM and Global Foundries SoC platform is based on the ARM Cortex-A9 processor, optimized ARM physical intellectual property (IP), and Global Foundries' 28-nm Gate-First High-K Metal Gate (HKMG) process. Together, ARM and Global Foundries expect to enable manufacturers of smartphones, smartbooks, tablets, and more to address increasing design and manufacturing complexities while reducing time to volume production at mature yields.

The company claims that its 28-nm process with Gate- First HKMG technology provides significant performance gains over the previous generation 40/45-nm technologies. Current estimates say that 28 nm with HKMG will provide approximately 40 percent higher performance within the same thermal envelope.

Global Foundries expects to start production on these next-generation technologies in the second half of this year at its fab in Dresden, Germany. Currently, Global Foundries has five 200-mm fabs and one 300-mm fab in Singapore as well as one leading-edge 300-mm-fab complex in Dresden, Germany. The firm has an aggressive production capacity plan that includes the expansion of Fab 1 in Dresden and Fab 7 in Singapore as well as construction of a new 300-mm facility in Saratoga County, NY.

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...

Guide to VNA Automation in MATLAB Using the TCP Interface

April 19, 2024
In this guide, advantages of using MATLAB with TCP interface is explored. The how-to is also covered for setting up automation language using a CMT VNA.