Xilinx
Zynq Rfsoc Dfe 5f9866c7bfb59

Xilinx’s Zynq RFSoC DFE Addresses Mass 5G Radio Deployments

Oct. 27, 2020
A new class of adaptive radio platforms combines flexibility for evolving 5G standards and a hardened radio digital front-end for performance, power, and cost effectiveness.

As the 5G rollout progresses, several challenges present themselves: 5G means increasing bandwidth and compute requirements must be provided with less power and at lower cost. Use cases for 5G are diverse, from enhanced mobile broadband to massive machine-type communications. 5G needs also to be ultra-reliable and deliver low latencies.

To meet those requirements for 5G radios, Xilinx’s new Zynq RFSoC digital front-end (DFE) combines hardened DFE blocks with a programmable, adaptive SoC that fits all use cases across the 5G low-, mid-, and high-band spectrum. Xilinx expects the devices to meet 2nd-wave 5G New Radio requirements with double the performance per watt of the company’s earlier front-end implementations.

Adaptability in 5G NR front ends is made even more critical by the fact that 5G standards continue to evolve even as the rollout commences. Front ends must scale to meet the needs of OpenRAN (O-RAN) and emerging disruptive business models. The Zynq RFSoC DFE’s hardened application-specific blocks bring high performance and power savings. Meanwhile, the device’s flexibility, which derives from integrated programmable adaptive logic, ensures a future-proof implementation as 5G 3GPP and O-RAN radio architectures evolve.

According to Xilinx, the Zynq RFSoC DFE offers twice the performance-per-watt compared to its prior generation and scales from small cell to massive MIMO macrocells. The solution is the industry’s only direct RF platform that enables carrier aggregation/sharing, multi-mode, multi-band 400-MHz instantaneous bandwidth in all FR1 bands, and emerging bands up to 7.125 GHz. When used as a millimeter-wave intermediate-frequency transceiver, it provides up to 1,600 MHz of instantaneous bandwidth. Zynq RFSoC DFE is architected such that designers can bypass or customize the hard IP blocks. For example, customers can leverage Xilinx’s digital predistortion (DPD) that supports existing and emerging GaN power amplifiers, or insert their own unique DPD IP.

Zynq RFSoC DFE design documentation and support is available to early access customers, with shipments expected during the first half of 2021.

Xilinx, www.xilinx.com/rfsoc-dfe

About the Author

David Maliniak | Executive Editor, Microwaves & RF

I am Executive Editor of Microwaves & RF, an all-digital publication that broadly covers all aspects of wireless communications. More particularly, we're keeping a close eye on technologies in the consumer-oriented 5G, 6G, IoT, M2M, and V2X markets, in which much of the wireless market's growth will occur in this decade and beyond. I work with a great team of editors to provide engineers, developers, and technical managers with interesting and useful articles and videos on a regular basis. Check out our free newsletters to see the latest content.

You can send press releases for new products for possible coverage on the website. I am also interested in receiving contributed articles for publishing on our website. Use our contributor's packet, in which you'll find an article template and lots more useful information on how to properly prepare content for us, and send to me along with a signed release form. 

About me:

In his long career in the B2B electronics-industry media, David Maliniak has held editorial roles as both generalist and specialist. As Components Editor and, later, as Editor in Chief of EE Product News, David gained breadth of experience in covering the industry at large. In serving as EDA/Test and Measurement Technology Editor at Electronic Design, he developed deep insight into those complex areas of technology. Most recently, David worked in technical marketing communications at Teledyne LeCroy, leaving to rejoin the EOEM B2B publishing world in January 2020. David earned a B.A. in journalism at New York University.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications