Omni Vision Nyxel2 5e7d147bcdad0

Near-Infrared Sensor Technology Shines in Low/No-Light Conditions

March 26, 2020
Process refinements result in near-infrared technology for image sensors that deliver 50% quantum efficiency for 940-nm NIR imaging.

In the second generation of its near-infrared (NIR) technology for image sensors that operate in low to no ambient light conditions, OmniVision Technologies offers silicon semiconductor architectures and processes that have hit new heights in quantum efficiency. The Nyxel 2 technology provides a 25% improvement over the preceding generation in the invisible 940-nm NIR light spectrum and a 17% bump at the barely visible 850-nm NIR wavelength.

These sensitivity improvements enable image sensors to see even better and farther under the same amount of light, further extending the image detection range. Nyxel 2-based camera systems also require fewer LED lights, thus reducing overall power consumption and extending battery life. These added benefits make Nyxel 2 a good candidate technology for surveillance systems, automotive in-cabin driving monitoring systems, and the burgeoning under-display sensors in mobile devices.

Machine and night vision camera applications rely on NIR technology because NIR light illuminates objects with wavelengths outside the visible spectrum, avoiding any interference with the surrounding environment. Additionally, because the night sky contains more NIR photons than visible photons, greater NIR sensitivity allows for higher-resolution image capture with fewer power-hungry LEDs, which is highly desirable for battery-powered and night vision security camera applications. Earlier NIR detection approaches fell short of the performance requirements for next-generation mobile and AR/VR products with embedded machine vision applications, as well as automotive and security cameras that require higher NIR sensitivity.

Competing CMOS approaches for NIR image sensing continue to rely solely on thick silicon to improve NIR sensitivity. However, this results in crosstalk and reduces the modulation transfer function (MTF). Attempts to overcome this by introducing deep-trench isolation (DTI) often lead to defects that corrupt the dark area of the image. With Nyxel 2, OmniVision has refined its approach to NIR imaging that combines thick-silicon pixel architectures with careful management of wafer surface texture to improve quantum efficiency (QE), along with extended DTI to retain the MTF levels of the first generation without affecting the sensor’s dark current.

With these refinements, OmniVision’s Nyxel 2 achieve 50% QE at 940 nm—a 25% improvement over the first generation, as measured using data from a 2.9-micron pixel. At the 850-nm NIR wavelength, Nyxel 2 can provide 70% QE, which is not only a 17% improvement over the first generation, but it is now on par with the QE levels of top RGB sensors that operate with visible light. The results of these Nyxel 2 technology improvements are even higher image quality, greater image detection range, and further reduction in light source requirements for even lower power consumption and extended battery life.

Nyxel 2’s performance improvements provide a range of new possibilities to designers. For surveillance systems, the number of IR LEDs around security camera lenses can be further reduced to save on both cost and power consumption, or the same number can be used to increase the brightness of captures taken in total darkness. For automotive driver-monitoring systems, accuracy can be increased while placing fewer LEDs in harder-to-see places within the cabin. For smartphones, the LEDs can be reduced to aid in the never-ending quest for extended battery life, while squeezing more components into compact form factors that both enable design innovation and reduce BOM costs.

OmniVision’s first image sensors with Nyxel 2 technology are expected to be available during the second half of 2020.

Omnivision Technologies, http://www.ovt.com

About the Author

David Maliniak | Executive Editor, Microwaves & RF

I am Executive Editor of Microwaves & RF, an all-digital publication that broadly covers all aspects of wireless communications. More particularly, we're keeping a close eye on technologies in the consumer-oriented 5G, 6G, IoT, M2M, and V2X markets, in which much of the wireless market's growth will occur in this decade and beyond. I work with a great team of editors to provide engineers, developers, and technical managers with interesting and useful articles and videos on a regular basis. Check out our free newsletters to see the latest content.

You can send press releases for new products for possible coverage on the website. I am also interested in receiving contributed articles for publishing on our website. Use our contributor's packet, in which you'll find an article template and lots more useful information on how to properly prepare content for us, and send to me along with a signed release form. 

About me:

In his long career in the B2B electronics-industry media, David Maliniak has held editorial roles as both generalist and specialist. As Components Editor and, later, as Editor in Chief of EE Product News, David gained breadth of experience in covering the industry at large. In serving as EDA/Test and Measurement Technology Editor at Electronic Design, he developed deep insight into those complex areas of technology. Most recently, David worked in technical marketing communications at Teledyne LeCroy, leaving to rejoin the EOEM B2B publishing world in January 2020. David earned a B.A. in journalism at New York University.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...