Phased-Array-Antenna Transceiver System Spans 10 To 35 GHz

April 12, 2007
Both commercial and military wireless-communication applications require systems that can operate over multi-frequency bands. Although a wideband phased-array antenna transceiver system has been looked at as a potential solution, its bandwidth ...

Both commercial and military wireless-communication applications require systems that can operate over multi-frequency bands. Although a wideband phased-array antenna transceiver system has been looked at as a potential solution, its bandwidth is limited by several system components. At Texas A&M University, however, Seungpyo Hong, Sang-Gyu Kim, Matthew R. Coutant, Christopher T. Rodenbeck, and Kai Chang developed a compact, phased-array-antenna transceiver system that can operate over a 10-to-35-GHz bandwidth. This system offers beam scanning and full-duplex communication.

Building a phased-array antenna system that operates in multi-frequency bands demands a wideband transmit/receive module, wideband antenna element, wideband phase shifter and control circuit, and phased-array architectures. For satellite communications, such systems also must provide compactness, full-duplex operation, and the ability to transmit and receive signals simultaneously. Through a new configuration, the researchers achieved an impressive increase in antenna bandwidth while adding two more millimeter-wave channels to the multiplexer. The result is a compact, six-channel, wideband multiplexer.

Essentially, the system consists of ultra-wideband Vivaldi antennas, a multi-line PET-based phase shifter, a six-channel microstrip multiplexer, and monolithic-microwave-integrated-circuit (MMIC) amplifiers. The multiplexer routes 10-, 19-, and 32-GHz signals to the transmit path and 12-, 21-, and 35-GHz signals to the receive path. For all six channels, the multiplexer shows insertion loss between 2.2 and 3.4 dB. See "A Multiband, Compact, and Full-Duplex Beam Scanning Antenna Transceiver System Operating from 10 to 35 GHz," IEEE Transactions on Antennas and Propagation, Feb. 2006, p. 359.

Sponsored Recommendations

Designing Wireless Modular Robots Using Advanced 3D Printing Precision

March 28, 2024
Learn how researchers at Southern Methodist University used 3D printing to fabricate wireless modular robots.

Microelectromechanical 3D Printing Resources

March 28, 2024
Check out our curated list of microelectromechanical 3D printing resources and see how PµSL technology offers freedom and speed.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Micro 3D Printing Helps Fabricate Microwells for Microgravity

March 28, 2024
Learn how micro 3D printing helped to fabricate miniaturized vessels called hydrowells for culturing 3D cellular spheroids for microgravity.