Latest from Systems

272875076 © Bruno Coelho | Dreamstime.com
291067564 © Antony Rodriguez | Dreamstime.com
280087088 © Yuriy Nedopekin | Dreamstime.com
dreamstime_Rootstocks_185240973
Soundwaves Dreamstime Rootstocks Promo 185240973
Soundwaves Dreamstime Rootstocks Promo 185240973
Soundwaves Dreamstime Rootstocks Promo 185240973
Soundwaves Dreamstime Rootstocks Promo 185240973
Soundwaves Dreamstime Rootstocks Promo 185240973
Tawanlubfah, Dreamstime
11 Tawanlubfah 1dreamstime Myths
11 Tawanlubfah 1dreamstime Myths
11 Tawanlubfah 1dreamstime Myths
11 Tawanlubfah 1dreamstime Myths
11 Tawanlubfah 1dreamstime Myths

6 Keys to Success for Cellular IoT (.PDF Download)

Oct. 4, 2019
6 Keys to Success for Cellular IoT (.PDF Download)

Integrating wireless capabilities into products can be challenging for engineers who are not specialists in RF design, even when working with familiar technologies like Wi-Fi and Bluetooth. But those challenges become even bigger when the design project involves the new low-power cellular Internet of Things (IoT) protocols: LTE CAT M1 (CAT M1) and narrowband-IoT (NB-IoT). That complexity is driven by several interconnected factors:

  • The complexity of cellular chipsets, which make them very difficult to work with for engineers other than true cellular experts.
  • The need for a long list of niche expertise—including specific areas of embedded systems programming, expertise in time series-based architectures, and more—to build each segment of the connectivity pathways.
  • The rigorous security and performance standards for the devices’ applications, including industrial and healthcare IoT use-case implementations.
  • The hurdles involved in cellular certification, which are more rigorous than typically involved in products using other protocols.
  • The sheer newness of the cellular IoT protocols, which means fewer resources and knowledgeable colleagues available for assistance.