ICP Etching Reduces MM-Wave Substrate Loss

FOR GALLIUM-ARSENIDE(GAAS) coplanar passive devices, the design methods used in centimeterwave frequencies have been proven to work for millimeter-wave frequencies up to W-band (75 to 110 GHz). Those same methods can be applied to CMOS coplanar ...
Dec. 12, 2008

FOR GALLIUM-ARSENIDE(GAAS) coplanar passive devices, the design methods used in centimeterwave frequencies have been proven to work for millimeter-wave frequencies up to W-band (75 to 110 GHz). Those same methods can be applied to CMOS coplanar devices at millimeter-wave frequencies. To demonstrate this point, two test third-order, quarter-wavelength, double-shortedstub wideband bandpass coplanar filters have been implemented at E-band by Pen-Li Huang, Tao Wang, and Shey-Shi Lu from National Taiwan University together with Yo-Sheng Lin from Taiwan's National Chi Nan University.

CMOS-compatible, inductively coupled-plasma, deep-trench technology was used to selectively but completely remove the silicon underneath the filter. After the filters were fabricated, postintegrated- circuit (post-IC) ICP processing was done on the backside of the die. After the backside etching, the results for Filter 1 showed that the input matching bandwidth (S11) below 10 dB moved from the 38.1-to-73.2-GHz band to the 49.4-to- 84-GHz band. In addition, the 3-dB bandwidth for forward transmission, S21, went from the 38.4-to-69.7-GHz band to the 47.1-to-83-GHz one. Filter 1 also achieved a 4.58-dB improvement in peak S21 performance to 3.8 dB. See "Micromachined CMOS E-Band Bandpass Coplanar Filters," Microwave And Optical Technology Letters, December 2008, p. 3123.

About the Author

Nancy Friedrich

Nancy Friedrich

RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sign Up for MWRF Newsletters
Get the latest news and updates.