Conquer Phase Noise And Jitter In Frequency Standards

July 11, 2012
To measure a signal’s noise level, phase noise or jitter can be used. The choice depends largely on the application, although jitter can be calculated from phase noise if the phase-noise characteristic is known. In a five-page white paper titled, “Designing for Exceptional Phase Noise and Jitter Performance in Precision GPS Frequency Standards,” Precision Time and Frequency, Inc. provides a concise overview of the
steps and considerations needed to design a high-performance, low-noise, precision-frequency standard.

To measure a signal’s noise level, phase noise or jitter can be used. The choice depends largely on the application, although jitter can be calculated from phase noise if the phase-noise characteristic is known. In a five-page white paper titled, “Designing for Exceptional Phase Noise and Jitter Performance in Precision GPS Frequency Standards,” Precision Time and Frequency, Inc. provides a concise overview of the steps and considerations needed to design a high-performance, low-noise, precision-frequency standard.

The first step is to select the right crystal oscillator. A “good” oven-controlled crystal oscillator (OCXO) will have a phase-noise characteristic of at least −125 dBc/Hz at 10 Hz offset from a 10-MHz carrier. At higher offsets, phase noise will generally fall linearly to a noise floor of less than −160 dBc/Hz at 10 kHz offset from a 10-MHz carrier. In evaluating phase-noise specifications, it is critical to keep in mind the carrier frequency at which the measurement is quoted, as there is a direct mathematical relationship between carrier frequency and measured phase noise.

The next task is to preserve the attained low phase noise when buffering and distributing. In addition to filtering the power supply at the input to the printed-circuit board (PCB), filtering should be placed at the supply pins to the buffer amplifiers. When it comes to amplifying and distributing low-phase-noise RF signals, current feedback amplifiers are sufficient. However, the layout must be correct to ensure desired performance. For this application, bandwidth limiting is required. Capacitance to ground at the inputs and outputs also must be minimized as much as possible to avoid instability. With these tips, the white paper provides a solid foundation for designers working in this segment.

Precise Time and Frequency, Inc., 50L Audubon Rd., Wakefield, MA 01880; (781) 245-9090, FAX: (781) 245-9099, www.ptfinc.com.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.