Maximize Stability In GPS Frequency Standards

Aug. 9, 2012
The Global Positioning System (GPS) has evolved in both its specification and the capabilities delivered by its satellites.

The Global Positioning System (GPS) has evolved in both its specification and the capabilities delivered by its satellites. Similarly, the equipment that uses the precise output data from those satellites has grown in quantity, variety, and its ability to support key infrastructure elements and higher performance demands. In a 10-page white paper titled, "Design Considerations for Optimizing Stability in GPS Disciplined Frequency Standards," Precise Time and Frequency, Inc. details the design of the phase-locked loop (PLL) in particular.

The paper begins with a system overview, noting that GPS architectures comprise simply a GPS receiver "engine," a high-performance oscillator, and the electronics needed to implement a PLL. If it is designed correctly, that PLL will not simply phase-lock the oscillator to the GPS-engine output. It also will extract the last bit of performance from satellite signals while delivering optimal performance to
end-user applications.

The design and performance of a 1-pps PLL for a GPS frequency standard is provided. It utilizes a high-quality, ovenized voltage-controlled crystal oscillator (OVCXO). Equations are provided for differences, the loop compensation transfer function, transfer function in the frequency domain, and more. The paper finds that the use of an ovenized VCXO provides good stability to roughly 100 s, which requires a slow loop with a time constant of about 100 s.

Design tips also are provided for the lowpass filter. To preserve stability, for example, the pole of the lowpass filter must be at least a decade higher in frequency than the loop bandwidth. The paper cautions that higher bandwidths will result in increased short-term noise from the GPS engine. A table is provided to illustrate this point. The document closes with a discussion of acquisition versus locked modes.

Precise Time and Frequency, Inc., 50L Audubon Rd.,
Wakefield, MA 01880; (781) 245-9090, FAX: (781) 245-9099,

Sponsored Recommendations

Wideband MMIC LNA with Bypass

June 6, 2024
Mini-Circuits’ TSY-83LN+ wideband, MMIC LNA incorporates a bypass mode feature to extend system dynamic range. This model operates from 0.4 to 8 GHz and achieves an industry leading...

Expanded Thin-Film Filter Selection

June 6, 2024
Mini-Circuits has expanded our line of thin-film filter topologies to address a wider variety of applications and requirements. Low pass and band pass architectures are available...

Mini-Circuits CEO Jin Bains Presents: The RF Engine of the 21st Century

June 6, 2024
In case you missed Jin Bains' inspiring keynote talk at the inaugural IEEE MTT-S World Microwave Congress last week, be sure to check out the session recording, now available ...

Selecting VCOs for Clock Timing Circuits A System Perspective

May 9, 2024
Clock Timing, Phase Noise and Bit Error Rate (BER) Timing is critical in digital systems, especially in electronic systems that feature high-speed data converters and high-resolution...