Software Speeds Simulation Of Phased-Array Antenna

Aug. 19, 2010
BECAUSE OF MAIN-BEAM SCANNING, assessing the performance of a phased-array antenna usually involves the repeated calculation of its far field. Unfortunately, the time-consuming brute-force method comprises the calculation followed by the ...

BECAUSE OF MAIN-BEAM SCANNING, assessing the performance of a phased-array antenna usually involves the repeated calculation of its far field. Unfortunately, the time-consuming brute-force method comprises the calculation followed by the summation of a large number of complex exponentials, which represent the individual contributions of the array elements to the far field. For an array antenna populated by 1000 array elements, calculating that far field would be on the order of minutes. As an alternative, a computer program dubbed APAS (for Advanced Phased-Array Simulator) has been presented by Will P.M.N. Keizer from The Netherlands.

This simulator promises to provide both accurate and high-speed computation of the far-field patterns of planar phased antennas including advanced far-field analysis capabilities and comprehensive two-dimensional (2D) and three-dimensional (3D) visualization of the simulated results. The program was written in MATLAB from The MathWorks. To minimize execution time, it is coded as matrix operations. Two-dimensional Fast Fourier Transform (FFT) techniques are used to calculate the far-field patterns.

With this software, it is possible to synthesize user-defined, low-sidelobe tapers for both the sum and difference patterns of arrays. APAS can handle aperture configurations with the array elements sited along rectangular or triangular lattices. In addition, the aperture may consist of subarrays. The program allows the noise figure and third-order intercept point of both the array and applied-transmitting/ receiving module to be calculated. See "APAS: An Advanced Phased-Array Simulator," IEEE Antennas And Propagation, April 2010, p. 40. For a demonstration version of the software, contact [email protected]g.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Forging the Future of Defense

Oct. 11, 2024
Raytheon’s Advanced Technology team incubates capabilities that fuel the future of defense. Together with leading research and development organizations, def...

Phase-Matched Cable Assemblies

Oct. 8, 2024
Phase-matched cable assemblies are ubiquitous, and growing in popularity. Electrical length matching requirements continue to tighten and the mechanical precision of cable construction...

3 New Wideband MMIC LNAs Cover 5.5 to 20 GHz

Oct. 8, 2024
Mini-Circuits’ expanded PMA3-series of wideband, ultra-low NF MMIC amplifiers operates in ranges between 5.5 and 20 GHz.

Wideband Amplifiers Variable and Temperature-Compensated Gain

Oct. 8, 2024
Many types of RF systems and applications that span from the upper end of microwave frequencies to the lower end of mmWave have arisen in recent years. Meeting system requirements...