Synthesizer Consumes 400 μW To Support ISM

Oct. 24, 2012
In this paper, several design techniques are presented that may overcome the challenges in the design of 0.5-V, ultra-low-power frequency synthesizers for implantable medical devices.

In 2009, the Federal Communications Commission (FCC) debuted the Medical Device Radiocommunications Service (MedRadio) for transmitting data using implanted biomedical devices. As a result, wireless implantable biomedical devices gained 5 MHz of bandwidth from 401 to 406 MHz. To succeed, however, these devices had to overcome a major challenge: limited battery lifetime. In wireless transceivers, one of the most power-hungry components is the frequency synthesizer, which generates the carrier frequency for wireless transmission. At Purdue University, a low-power, low-voltage frequency synthesizer for implantable medical devices has been created by Wu-Hsin Chen, Wing-Fai Loke, and Byunghoo Jung.

Their 0.5-V medical-band frequency synthesizer consumes just 440 μW while exhibiting phase noise of -91.5 dBc/Hz at 1 MHz offset from the carrier. A number of design approaches were utilized to give this synthesizer its performance edge. To provide a high driving current with a low standby current, for example, the charge pump relies on dynamic threshold-voltage and switch-coupled techniques. In addition, a ring-based voltage-controlled oscillator (VCO) uses a dual resistor-varactor tuning method to compensate for process-voltage-temperature (PVT) variations and the exponential voltage-to-current curve. See “A 0.5-V, 440-μW Frequency Synthesizer for Implantable Medical Devices,” IEEE Journal Of Solid-State Circuits, Aug. 2012, p. 1896.

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...

Guide to VNA Automation in MATLAB Using the TCP Interface

April 19, 2024
In this guide, advantages of using MATLAB with TCP interface is explored. The how-to is also covered for setting up automation language using a CMT VNA.