Microwaves & RF
  • Resources
  • Directory
  • Webinars
  • White Papers
  • Video
  • Blogs
  • CAD Models
  • Advertise
    • Search
  • Top Stories
  • Products of the Week
  • Defense
  • Test
  • Components
  • Semiconductors
  • Embedded
  • Data Sheets
  • Topics
    - TechXchange Topics -- Markets -DefenseAutomotive- Technologies -Test & MeasurementComponentsCellular / 5G / 6G EDA
    Resources
    Top Stories of the WeekMWRF ResourcesDigital issuesEngineering AcademyWISESearch Data SheetsCompany DirectoryLibraryContributeSubscribe
    Advertise
    https://www.facebook.com/microwavesrf/
    https://www.linkedin.com/groups/3848060/profile
    https://twitter.com/MicrowavesRF
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    1. Technologies
    2. Components
    3. Passive components

    Methodology Optimizes Design Of Scalp-Implantable Antennas

    Oct. 8, 2012
    With this design methodology, antennas can be optimized for several implementation scenarios and biotelemetry applications.
    The Editors of Microwaves and RF

    In the area of implanted medical devices, antenna-enabled biotelemetry is gaining attention for its potential to overcome the limitations of inductive biotelemetry. Such issues include low data rate, restricted communication range, and sensitivity to inter-coil misalignment. At Greece’s National Technical University of Athens, two researchers have developed a two-step design methodology for implantable planar inverted-F antennas (PIFAs). Asimina Kiourti and Konstantina S. Nikita proposed miniature, scalp-implantable PIFAs at 402, 433, 868, and 915 MHz. Their antennas exhibit identical volume of π x 62 x 1.8 mm3 and 10-dB bandwidths of 27, 28, 38, and 40 MHz.

    In their efforts to provide insight into implantable PIFA design and the selection of biotelemetry frequency, the researchers studied the design and radiation performance of miniature antennas for integration in head-implanted medical devices operating in both the medical-implant-communication-service (MICS; 402.0 to 405.0 MHz) and industrial-scientific-medical (ISM; 433.1 to 434.8, 868.0 to 868.6, and 902.8 to 928.0 MHz) bands. They then created a parametric model of a skin-implantable antenna and both fabricated and tested a prototype. To speed the design process, the researchers suggest a two-step methodology: approximate antenna design inside a simplified model geometry and then perform Quasi-Newton optimization inside a canonical model of the intended implantation site. The antennas are further analyzed inside an anatomical model of a human head.

    The results reveal that the exhibited radiation performance (radiation pattern, gain, specific absorption rate, and quality of communication with exterior equipment) greatly depends on design parameters and operating frequency. The researchers tackle the choice of canonical versus anatomical tissue models for design purposes while addressing patient safety and link budget at various frequencies. For the different stages of antenna design and analysis, both finite-element (FE) and finite-difference-time-domain (FDTD) numerical solvers were used. See “Miniature Scalp-Implantable Antennas for Telemetry in the MICS and ISM Bands: Design, Safety Considerations and Link Budget Analysis,” IEEE Transactions On Antennas And Propagation, Aug. 2012, p. 3568.

    Continue Reading

    The 7 Pillars of 5G/6G RF System Design (Part 2): RF Power

    Maximize X-ray Imaging Performance with Low-Noise Precision Voltage References

    Sponsored Recommendations

    Near and Far Field Measurement

    Oct. 31, 2023

    S-parameters for High-frequency Circuit Simulations

    Oct. 31, 2023

    Common Mode Filter Chokes for High Speed Data Interfaces

    Oct. 31, 2023

    Simulation Model Considerations: Part I

    Oct. 31, 2023

    New

    Orbital Space Junk is No Joke

    Empowering SOMs for IoT Devices with Matter Connectivity

    U.S. DoD Works to Keep Ukraine’s F-16s Flying

    Most Read

    Products of the Week: November 20, 2023

    IMS 2023 in the Rearview Mirror

    Laser and Glass Cell Create Non-Metallic, Atom-Based Microwave Antenna

    Sponsored

    VNA 101 Bootcamp: VNA Measurement Techniques for Antenna Test

    Webinar: Antenna Component Testing

    Near and Far Field Measurement

    Microwaves & RF
    https://www.facebook.com/microwavesrf/
    https://www.linkedin.com/groups/3848060/profile
    https://twitter.com/MicrowavesRF
    https://www.youtube.com/channel/UCXKEiQ9dob20rIqTA7ONfJg
    • About Us
    • Contact Us
    • Advertise
    • Do Not Sell or Share
    • Privacy & Cookie Policy
    • Terms of Service
    © 2023 Endeavor Business Media, LLC. All rights reserved.
    Endeavor Business Media Logo