Medical

Micromachining Forms 1.9-THz Silicon Antenna

May 24, 2017
Micromachining techniques were used to fabricate two 1.9-THz antennas on silicon wafers.

Terahertz (THz) frequencies have been proving quite useful for research in materials science and medical analysis. The challenge is in generating and directing signals at such high frequencies without excessive loss. By using micromachining techniques on silicon wafers, researchers at the Jet Propulsion Laboratory (JPL) of the California Institute of Technology were able to fabricate two antennas for use at 1.9 THz based on a leaky-wave waveguide feed and silicon microlens. That particular frequency is of interest for the heterodyne detection of the spectral line of ionized C+ fine structure transitions, as applied in galactic studies of dark clouds. The researchers worked under a contract from NASA, with the support of the Submillimeter-Wave Advanced Technology Group of JPL.

In constructing these antennas, the scientists were faced with the tradeoff between size and directivity: Longer horns are needed for higher directivity. The two antennas were a 2.6-mm-diameter microlens antenna with directivity of 33.2 dB and a 6.35-mm-diameter microlens antenna with directivity of 41.2 dB. The antennas were machined using deep reactive ion etching (DRIE) to form multiple-depth features with high aspect ratios on silicon wafers. The approach provides features with high precision and also enables integration of a large of a THz heterodyne receiver on a silicon wafer.

The two lenses were fabricated on different wafers, since they required different photoresist thicknesses and different silicon etch rates due to the different heights. The surfaces of the lenses were scanned to determine the accuracy of the fabrication process; they were found to achieve root-mean-square (RMS) errors in the neighborhood of 1.4 μm for the smaller lens and 9.9 μm for the larger lens. Measurements on the two antennas were made using a 1.9-THz transmitter chain starting with a 17-GHz frequency synthesizer feeding a commercial multiplier to reach 105.5 GHz.

The multiplier’s output signals were boosted by a WR-10 power amplifier and then doubled to produce signals at 211.1 GHz. A tripler transformed those signals to output signals at 633.3 GHz and 2 mW, which was fed to a tripler on a silicon wafer stack to yield 800 nW at 1.9 THz. A bolometer was used for the power measurements. The researchers were encouraged by the test results, which included radiation efficiencies of 70 and 60%, respectively, for the smaller and larger lens antennas. Future work will target the development of larger antennas with less surface defects and more precise curvature.

See “Development of Silicon Micromachined Microlens Antennas at 1.9 THz,” IEEE Transactions on Terahertz Science and Technology, Vol. 7, No. 2, March, 2017, p. 191.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...