1.8-GHz Synthesizer Is Based On MEMS Resonator

Dec. 17, 2009
To implement critical functions, many highperformance systems rely on fully integrated passive elements with relatively limited performance. Often, such components are combined with higher-quality off-chip devices that implement specific key ...

To implement critical functions, many highperformance systems rely on fully integrated passive elements with relatively limited performance. Often, such components are combined with higher-quality off-chip devices that implement specific key functions. An alternative may exist in solutions based on microelectromechanical systems (MEMS). At Montreal's McGill University, an integrated and digitally programmable synthesizer that uses a MEMS resonator as its reference has been presented by Frederic Nabki, Karim Allidina, Faisal Ahmad, Paul-Vahe Cicek, and Mourad N. El-Gamal.

The fractional-N synthesizer covers 1.7 to 2.0 GHz. It employs a third-order, 20-b delta-sigma modulator to deliver a theoretical output resolution of ~11 Hz. To maintain a high level of system integration, a fully integrated, on-chip, dual-path loop filter is used. With a supply voltage of 2 V, the phase noise for a 1.8-GHz output frequency and a ~12-MHz reference signal is -122 dBc/Hz at a 600- kHz offset and -137 dBc/Hz at a 3-MHz offset.

Because the MEMS resonator measures just 25 by 14 m, the entire system has a total area of 6.25 mm2. The clamped-beam resonators are fabricated using a CMOS-compatible process. Compared to silicon, they boast higher powerhandling capabilities and operating frequencies because their main structural layer is made of silicon carbide. The resonators also are electrostatically and thermally tunable.

An integrated, high-gain-bandwidth transimpedance amplifier (TIA) is combined with the resonator to generate the synthesizer's input reference signal. The TIA employs automatic gain control (AGC) to mitigate the inherent lowpower- handling capabilities and nonlinearities of the MEMS device. See "A Highly Integrated 1.8 GHz Frequency Synthesizer Based on a MEMS Resonator," IEEE Journal Of Solid-State Circuits, August 2009, p. 2154.

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...

Guide to VNA Automation in MATLAB Using the TCP Interface

April 19, 2024
In this guide, advantages of using MATLAB with TCP interface is explored. The how-to is also covered for setting up automation language using a CMT VNA.