Metamaterials Show Potential For Planar Components

March 12, 2008
Metamaterials intrigue researchers for their potential to fabricate tunable and wideband passive components. Because of line parasitics, the reactive elements responsible for the left-handed (LH) band exhibit a forward or right-handed (RH) ...

Metamaterials intrigue researchers for their potential to fabricate tunable and wideband passive components. Because of line parasitics, the reactive elements responsible for the left-handed (LH) band exhibit a forward or right-handed (RH) transmission band at higher frequencies. Usually, they are separated from the LH band by a stop band. Due to the composite behavior of LC loaded lines, these structures were called composite right/left-handed (CRLH) transmission lines. At Spain's Universitat Autonoma de Barcelona, Marta Gil, Jordi Bonache, and Ferran Martin implemented a CRLH transmission line by means of complementary-splitring- resonators (CSRRs) and interdigital capacitors. In doing so, they provided a transmission band for Ultra Wideband (UWB) applications in the interval of 3.1 to 10.6 GHz.

To obtain this large bandwidth, the researchers merged the LH and RF bands that are typical of these structures. To eliminate possible interfering signals, these UWB bandpass filters could use an attenuation pole within the band. In their work, the researchers designed several UWB bandpass filters that exhibited attenuation poles at different frequencies. Those frequencies have been located at the CRLH passband at 5.5 and 4.5 GHz.

The structure was designed to exhibit a transmission zero at fZ = 2.4 GHz and a characteristic impedance of about 50 O. According to measured and simulated filter responses, the measured 3-dB filter bandwidth extends from 3.08 to 11.09 GHz. Insertion loss is 1.3 to 2.5 dB or better above and/ or below the notch. Lower stop-band rejection is 45 dB or more. See "Metamaterial Filters with Attenuation Poles in the Pass Band for Ultra Wide Band Applications," Microwave And Optical Technology Letters, December 2007, p. 2909.

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...

Guide to VNA Automation in MATLAB Using the TCP Interface

April 19, 2024
In this guide, advantages of using MATLAB with TCP interface is explored. The how-to is also covered for setting up automation language using a CMT VNA.