60-GHz Circularly Polarized Antenna Employs Artificial Magnetic Conductor

Sept. 17, 2012
To serve 60-GHz WPAN applications, a 60-GHz, circularly polarized on-chip antenna employs a modified artificial magnetic conductor (AMC) structure to increase performance.

For wireless personal-area networks (WPANs), the 60-GHz unlicensed frequency band offers the hope of multi-gigabit-per-second wireless connectivity for short distances between devices. Impressively, the data rates that are being touted exceed the rates offered by current lower-frequency wireless-local-area-networking (WLAN) technologies by 40 to 100 times. As complementary-metal-oxide-semiconductor (CMOS) approaches are trialed for such applications, however, most on-chip antennas provide poor radiation efficiency. A solution has been presented in the form of a 60-GHz artificial-magnetic-conductor (AMC) -based circularly polarized (CP) antenna from Xiao-Yue Bao and Yong-Xin Guo from the National University of Singapore, along with Yong-Zhong Xiong from the Institute of Microelectronics.

The design comprises a wideband, circularly polarized loop antenna (top layer) and an AMC structure (bottom layer). With the circular open-loop structure, the gap within the loop can excite the traveling-wave current. It may then achieve circular polarized radiation. The researchers found that the circular-polarization bandwidth can be significantly increased by introducing an additional inner parasitic loop.

When the modified AMC structure is integrated into the bottom layer, antenna performance can be optimized. The AMC plane is designated as a high-impedance surface (HIS) or perfect magnetic conductor (PMC). As a result, an AMC plane can produce constructively in-phase reflections with the incident wave at a specified operating frequency band. The stronger radiation required for transmission can therefore be generated. Design flexibility also increases as a result of this approach.

The antenna and modified AMC structure measure 1.8 x 1.8 x 0.3 mm3. The proposed antenna provides simulated peak gain of -3.7 dBi and measured gain of -4.4 dBi. It offers a simulated and measured axial ratio (AR below 3) bandwidth covering 57 to 67 GHz. See “60-GHz AMC-Based Circularly Polarized On-Chip Antenna Using Standard 0.18-μm CMOS Technology,” IEEE Transactions On Antennas And Propagation, May 2012, p. 2234.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...