Cables Are Stable Through 40 GHz

July 11, 2012
Coaxial cables in the Stability series from Maury Microwave may be flexible, but they are also rock solid when it comes to maintaining their amplitude and phase characteristics with one or with many flexures.

Coaxial cables in the Stability™ series from Maury Microwave may be flexible, but they are also rock solid when it comes to maintaining their amplitude and phase characteristics with one or with many flexures. For example, Series SC-35 Stability cables are suitable for applications from DC to 26.5 GHz and boast typical amplitude stability of ±0.02 dB and typical phase stability of ±3.5 deg. with flexure. The typical VSWR is 1.25:1 through 26.5 GHz and the typical insertion loss is 0.67 dB/ft. Higher-frequency Series SC-292 Stability cables operate from DC to 40 GHz with typical amplitude stability of ±0.02 dB and typical phase stability of ±0.05 dB, and typical phase stability of ±5 deg. with flexure. The typical VSWR is 1.25:1 and the typical insertion loss is 0.84 dB/ft.

Both cables are designed for 50-Ω systems; both exhibit nominal velocity of propagation of 76% and nominal time delay of 1.34 ns/in. (or 4.4 ns/m). The shielding effectiveness (SE) is better than 90 dB from DC to 18 GHz. Both cables exhibit phase stability versus temperature of better than 4 deg./GHz from -55 to +125°C. In addition to helping achieve improved accuracy with microwave vector network analyzers (VNAs), these cables are suitable for general bench top testing and in automatic-test-equipment (ATE) systems, or wherever “fear of flexure” may disrupt measurement accuracy.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Wideband MMIC LNA with Bypass

June 6, 2024
Mini-Circuits’ TSY-83LN+ wideband, MMIC LNA incorporates a bypass mode feature to extend system dynamic range. This model operates from 0.4 to 8 GHz and achieves an industry leading...

Expanded Thin-Film Filter Selection

June 6, 2024
Mini-Circuits has expanded our line of thin-film filter topologies to address a wider variety of applications and requirements. Low pass and band pass architectures are available...

Mini-Circuits CEO Jin Bains Presents: The RF Engine of the 21st Century

June 6, 2024
In case you missed Jin Bains' inspiring keynote talk at the inaugural IEEE MTT-S World Microwave Congress last week, be sure to check out the session recording, now available ...

Selecting VCOs for Clock Timing Circuits A System Perspective

May 9, 2024
Clock Timing, Phase Noise and Bit Error Rate (BER) Timing is critical in digital systems, especially in electronic systems that feature high-speed data converters and high-resolution...