CMOS Charges 52-GHz Phased-Array Receiver

Feb. 24, 2009
The release of a license-free 7-GHz band around 60 GHz has prompted researchers around the globe to focus on millimeter-wave circuit and system design for this frequency band. Although such frequencies suggest the use of semiconductor processes like GaAs ...

The release of a license-free 7-GHz band around 60 GHz has prompted researchers around the globe to focus on millimeter-wave circuit and system design for this frequency band. Although such frequencies suggest the use of semiconductor processes like GaAs and InP, the constant scaling of CMOS technology has spawned receivers that are fast enough for millimeter-wave operation. Recently, a 90-nm, digital-CMOS, two-path, 52-GHz phased-array receiver based on local-oscillator (LO) phase shifting was demonstrated. The quadrature voltage-controlled oscillator (QVCO) flaunts an 8-GHz tuning range. The receiver achieves 30 dB of maximum gain and 7.1 dB of minimum noise figure per path around 52 GHz while consuming 65 mW. It occupies an area of just 0.1 mm2.

This achievement is credited to Karen Scheir, Stephane Bronckers, Jonathan Borremans, and Piet Wambacq from IMEC and Vrije Universiteit Brussel in Belgium together with Yves Rolain from Vrije Universiteit. To implement beamforming, the researchers' 52-GHz phased-array receiver relies on phase shifting in the LO path. The receiver comprises two antenna paths that each has a low-noise amplifier (LNA), mixer, and phase generator. A QVCO generates quadrature LO outputs, which are buffered and distributed to the phase generators. The QVCO is tunable between 48.2 and 51.7 GHz. It boasts phase noise of 87 dBc/Hz offset 1 MHz from the carrier and draws 19 mA from a +1.2-VDC supply.

A high-impedance cascading approach was adopted between stages. The researchers also proposed an algorithm to allow in-situ measurement of the LNA center frequency. Thanks to techniques for the implementation of variable gain and the expansion of the QVCO tuning range, a gain-selection range of 12.6 dB and a QVCO tuning range of 8 GHz were achieved. See "A 52 GHz Phased-Array Receiver Front-End in 90 nm Digital CMOS," IEEE Journal Of Solid-State Circuits, December 2008, p. 2651.

About the Author

Nancy Friedrich | Editor-in-Chief

Nancy Friedrich began her career in technical publishing in 1998. After a stint with sister publication Electronic Design as Chief Copy Editor, Nancy worked as Managing Editor of Embedded Systems Development. She then became a Technology Editor at Wireless Systems Design, an offshoot of Microwaves & RF. Nancy has called the microwave space “home” since 2005.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications