Taking Steps Toward Practical THz Technology (.PDF Download)

Jan. 4, 2016

As “lower-frequency” applications, such as wireless communications, continue to consume bandwidth, researchers of imaging systems look beyond even the millimeter-wave range for available spectrum. For many applications, including materials research, medical diagnostics, and homeland-security systems, terahertz (THz) technology offers great promise. Located in that mysterious part of the electromagnetic (EM) spectrum where millimeter-wave EM energy makes the transition to infrared (IR) optical energy, THz imaging can provide greater focus and control than x-ray radiation...

Register or Sign in below to download the full article in .PDF format, including high-resolution graphics and schematics when applicable.

Sponsored Recommendations

UHF to mmWave Cavity Filter Solutions

Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...

Request a free Micro 3D Printed sample part

The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.