Front-End Modules Narrow Wireless Performance Gaps

Jan. 26, 2010
In wireless digital communications, the integrated transceiver often fails to produce enough power to realize the full potential of a specification (typically +20 dBm). For a fully integrated CMOS radio on a single die, for example, output power ...

In wireless digital communications, the integrated transceiver often fails to produce enough power to realize the full potential of a specification (typically +20 dBm). For a fully integrated CMOS radio on a single die, for example, output power seldom exceeds 0 dBm. In a white paper titled "RF Front-End Integrated Circuits," RFaxis, Inc. notes that the limitations of today's high-density radios have created a need for external amplifiers in various wireless systems. The note provides an overview of various front-end modules (FEMs) and their packaging options. It then spotlights the firm's own RF front-end integrated circuit (RFeIC), which houses a matching and switching network for transmit/receive operation as well as a highperformance linear power amplifier and low-noise amplifier (LNA) in a single BiCMOS die.

The firm points out that gallium arsenide (GaAs) is very suitable as a substrate for highfrequency circuits, as bulk GaAs has high resistivity. Yet MESFETs formed on this material require a dual voltage supply and associated bias circuitry, which increases size while reducing power efficiency. The note also explores the strengths and weaknesses of GaAs HEMTs, PHEMTs, and HBTs as well as composite GaAs (which will include indium-gallium-phosphide HBT and PHEMT devices on the same die). In addition, the document provides an overview of FEM design options including quadflat- no-leads (QFN), low-temperature co-firedceramic (LTCC), and flip-chip packaging. The second half of this note details the company's own design process, which allows the fabrication of all of the components needed for a FEM on a single die.

RFaxis, Inc., 36 Discovery, Suite 140, Irvine, Ca 92618; (949) 336-1360, FAX: (949) 336-1361, Internet: www.rfaxis.com.

Sponsored Recommendations

In-Circuit Antenna Verification

April 19, 2024
In this video, Brian Walker, Senior RF Design Engineer at Copper Mountain Technologies, shows how there can be significant variation of the performance of a PCB-mounted antenna...

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...

Fast-Switching GaAs Switches Are a High-Performance, Low-Cost Alternative to SOI

April 12, 2024
While many MMIC switch designs have gravitated toward Silicon-on-Insulator (SOI) technology due to its ability to achieve fast switching, high power handling and wide bandwidths...