Microwaves Determine Pregnancy Through Urine Analysis

July 13, 2007
Shortly after conception, the human chorionic gonadotropin (hCG) glycoprotein hormone is secreted by the developing placenta. During early gestational growth, hCG rises in concentration. As a result, hCH is an excellent marker for the early ...

Shortly after conception, the human chorionic gonadotropin (hCG) glycoprotein hormone is secreted by the developing placenta. During early gestational growth, hCG rises in concentration. As a result, hCH is an excellent marker for the early detection of pregnancy. When the dielectrical properties of pregnant versus non-pregnant women are analyzed at microwave frequencies, the results indicate that the dielectric constant of the pregnant women's urine samples is smaller than the samples of non-pregnant women. In addition, the conductivity of the pregnant women's urine samples is higher than that of the non-pregnant women's samples. Microwaves thus offer an alternative in-vitro method of determining pregnancy. This finding came out of the Microwave Tomography and Materials Research Laboratory at Cochin University of Science and Technology (Kochi, India). The work was conducted by Anil Lonappan, Vinu Thomas, G. Bindu, and K.T. Mathew. C. Rajasekaran from the Medical College in Trivandrum also participated.

The researchers relied on in-vitro measurements using a cavity perturbation technique, which is employed in the frequency range from 2 to 3 GHz. The measurement setup comprised a transmission-type S-band rectangular cavity resonator and an HP 8714 ET network analyzer. The cavity resonator was made from a transmission line (waveguide or coaxial line) with one or both ends closed. It can be either transmission or reflection type. To test the results, the same samples were subjected to investigations in the clinical laboratory for quantitative analysis. Aside from being accurate, the cavity perturbation technique was found to be quick. It eliminated the reaction time found in test strips and midstream tests. See "Determination of Pregnancy Using Microwaves," Microwave and Optical Technology Letters, April 2007, p. 786.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Forging the Future of Defense

Oct. 11, 2024
Raytheon’s Advanced Technology team incubates capabilities that fuel the future of defense. Together with leading research and development organizations, def...

Phase-Matched Cable Assemblies

Oct. 8, 2024
Phase-matched cable assemblies are ubiquitous, and growing in popularity. Electrical length matching requirements continue to tighten and the mechanical precision of cable construction...

3 New Wideband MMIC LNAs Cover 5.5 to 20 GHz

Oct. 8, 2024
Mini-Circuits’ expanded PMA3-series of wideband, ultra-low NF MMIC amplifiers operates in ranges between 5.5 and 20 GHz.

Wideband Amplifiers Variable and Temperature-Compensated Gain

Oct. 8, 2024
Many types of RF systems and applications that span from the upper end of microwave frequencies to the lower end of mmWave have arisen in recent years. Meeting system requirements...