Component Integration Simplifies System Design

Oct. 1, 2009
Several of this week's stories address lower-level (as chips or modules) integration that is intended to make a system designer's job easier. In one, phase-locked-loop (PLL) synthesizers and their components are joined on chip with low-phase-noise ...

Several of this week's stories address lower-level (as chips or modules) integration that is intended to make a system designer's job easier. In one, phase-locked-loop (PLL) synthesizers and their components are joined on chip with low-phase-noise voltage-controlled oscillators (VCOs) to speed the implementation of a complete frequency synthesizer (see the Cover Features in the September and October 2009 issues of Microwaves & RF). In another, GPS circuitry is combined with passive antennas and dynamic matching circuitry to simplify the creation of compact GPS receivers within wrist watches and other portable products.

This component level of integration saves the steps of selecting and matching components such as mixers, filters, amplifiers, oscillators, and bias circuitry when assembling a system. Of course, it also takes away the opportunity of selecting optimum individual components for those functions but, with the improved performance of multifunction integrated modules and ICs from a variety of suppliers, the gap between hand-selected and optimized individual components and integrated modules or ICs appears to be shrinking quickly with time.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications