Reflectarray Antenna Can Steer Main Beam To Large Angles From Broadside

Aug. 14, 2007
Microstrip reflectarray antennas promise to provide the best features of printed phased-array and parabolic reflector antennas. Such antennas comprise a feed horn, which illuminates a flat array of reflection elements. To produce a planar phase ...

Microstrip reflectarray antennas promise to provide the best features of printed phased-array and parabolic reflector antennas. Such antennas comprise a feed horn, which illuminates a flat array of reflection elements. To produce a planar phase front in a desired direction, each element's reflection phase has to be adjusted within a 360-deg. range. For beam-scanning applications, the electronically tunable microstrip reflectarray technology provides advantages over an active phased array realized with transmit/receive modules. It eliminates the need for a beamforming network while requiring less active components. At the Ecole Polytechnique in Montreal, Canada, Mathieu Riel and Jean-Jacques Laurin designed a C-band electronically beam-scanning reflectarray that operates without a beamforming network.

This reflectarray comprises a microstrip patch that is printed on a flexible membrane substrate. It is then aperture-coupled to a transmission line loaded with two varactor diodes. When the aperture-coupled antenna is perfectly matched, the microstrip lines are lossless and radiation leakage from the slot can be neglected. The phase variation of the reflection co-efficient, Γtot, will be the same as the phase variation of the reflection co-efficient, Γe.

The designed element allows continuous tuning of the reflected signal's phase over a 360-deg. range with a maximum loss of 2.4 dB at 5.4 GHz. According to the measured results on a 30-element reflectarray breadboard, the main beam can be steered to large angles by adjusting the bias voltages on each element. See "Design of an Electronically Beam Scanning Reflectarray Using Aperture-Coupled Elements," IEEE Transactions on Antennas and Propagation, May 2007, p. 1260.

About the Author

Nancy Friedrich | Editor-in-Chief

Nancy Friedrich began her career in technical publishing in 1998. After a stint with sister publication Electronic Design as Chief Copy Editor, Nancy worked as Managing Editor of Embedded Systems Development. She then became a Technology Editor at Wireless Systems Design, an offshoot of Microwaves & RF. Nancy has called the microwave space “home” since 2005.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications