TDR/TDT System Handles High-Bandwidth S-Parameter Analysis

Aug. 14, 2007
In high-speed serial communications systems, a designer usually relies on a vector network analyzer (VNA) to measure S-parameters. The VNA measures input/output reflections and transmission by sequentially applying signals at various frequencies ...

In high-speed serial communications systems, a designer usually relies on a vector network analyzer (VNA) to measure S-parameters. The VNA measures input/output reflections and transmission by sequentially applying signals at various frequencies and recording the response of the device under test (DUT). The measured values that result are a function of frequency. In contrast, recent advancements in high-speed time-domain reflectometry (TDR) and time-domain transmission (TDT) have created an alternative to frequency-domain testing through the use of time-domain analysis. This approach is explored in a white paper from Picosecond Pulse Labs (Boulder, CO) titled, "S-parameter Measurements with the PSPL Model 4022 High-Speed TDR and TDT System."

A fast rise-time pulse is composed of many different frequency components. As a result, high-speed TDR and TDT measurements may be used to measure S-parameters versus frequency. With this technique, TDR and TDT measurements are initially recorded in the time domain. They are then transformed into the frequency domain for return loss and transmission analysis. Instead of being sequentially tested at single frequencies, the DUT is tested with an entire spectrum of frequencies at once.

The key to obtaining frequency-domain data from time-domain measurements is the Fast Fourier Transform (FFT). Using the FFT, frequency-domain data can be calculated from sampled time-domain measurements. An inverse FFT allows frequency-domain measurements to be transformed into time-domain data.

Commercial TDR/TDT measurement systems typically produce a pulse and measure it on the same channel using a sampler built into the channel. Picosecond Pulse Lab's Model 4022 also includes circuitry to utilize a separate high-bandwidth sampler plug-in. According to the company, system bandwidth is thereby increased because a faster edge is produced. In addition, a high-bandwidth sampler is used to acquire the response.

The note explains how to compare TDR/TDT systems for frequency content. The trick is to measure the incident pulse and calculate the frequency or spectral content of the pulse with an FFT. The second half of the paper is devoted to examples of TDR/TDT-based S-parameter measurements. The measurements made with the Model 4022 demonstrate the viability of using a high-bandwidth TDR/TDT measurement system to acquire S-parameter data.

Picosecond Pulse Labs, 2500 55th St., Boulder, CO 80301; (303) 443-1249, Fax: (303) 447-2236, e-mail: [email protected], Internet: www.picosecond.com

Sponsored Recommendations

Designing Wireless Modular Robots Using Advanced 3D Printing Precision

March 28, 2024
Learn how researchers at Southern Methodist University used 3D printing to fabricate wireless modular robots.

Microelectromechanical 3D Printing Resources

March 28, 2024
Check out our curated list of microelectromechanical 3D printing resources and see how PµSL technology offers freedom and speed.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Micro 3D Printing Helps Fabricate Microwells for Microgravity

March 28, 2024
Learn how micro 3D printing helped to fabricate miniaturized vessels called hydrowells for culturing 3D cellular spheroids for microgravity.