Mwrf 10670 5g 829068400

Optical Beamforming Guides 5G Base Stations

April 23, 2019
A hybrid antenna system combines optical and microwave technologies to provide broadband coverage at mmWave frequencies.

As bandwidth is consumed at lower frequencies, the need for higher wireless data rates grows stronger, pushing wireless communications systems into the millimeter-wave (mmWave) frequency range. For wireless infrastructure systems such as base stations operating at mmWave frequencies in 5G wireless systems, antennas become a focal point in order to provide suitable gain, bandwidth, and field of view (FoV). On that front, a research team from The Eindhoven University of Technology (Eindhoven, The Netherlands) has combined technologies such as RF, in the form of a low-noise amplifier (LNA), and a photonic integrated circuit (PIC) to create a broadband mmWave antenna design with an optical beamformer to shrink the size of the feed system. 

The hybrid antenna system shows potential for use in point-to-point backhaul systems, satellite communications (satcom) systems, and microwave and millimeter-wave 5G wireless infrastructure systems. The designers applied the focal-plane-array (FPA) concept to achieve high antenna gain and high effective isotropic radiated power (EIRP) with electronic beamsteering. By using a photonics beamformer, a broadband antenna for use from 20 to 40 GHz can be designed with a fiber-based interface to a central processing unit.

The novel antenna concept offers more than 40 dBi gain across a field of view of ±15 deg. at 28.5 GHz. The optical beamformer generates M beams simultaneously by using M laser diodes with separately tunable emission wavelengths. Optical phase shifters are used to achieve the phase shifts between the antenna elements. The hybrid antenna system is backed by several already-fabricated ICs, for several of the most critical functions in the system.

See “Building 5G Millimeter-Wave Wireless Infrastructure,” IEEE Antennas & Propagation Magazine, April 2019, pp. 53-62.

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Can I Use the VNA Software Without an Instrument?

April 19, 2024
Our VNA software application offers a demo mode feature, which does not require a physical VNA to use. Demo mode is easy to access and allows you to simulate the use of various...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...