Mwrf 9731 1118 05q 5

RFID Antennas Tackle Body-Area Applications

Oct. 25, 2018
The steady growth of RFID applications is motivating the design of smaller, more effective RFID antennas for worn and implantable devices.

Wireless communications technologies are becoming such enmeshed parts of daily life that

radio-frequency identification (RFID) antennas and electronic devices are forming multi-function systems within the range of a single person’s body. When equipped with the proper antennas, passive RFID devices can even provide invaluable sensing functions for medical purposes, such as heart-rate and breathing-rate monitoring, as well as for stimulating the nervous system to achieve pain relief.

Such RFID-technology-based body-area systems consist of passive RFID tags and an RFID reader. The RFID reader transmits a wireless RF signal that activates the tags; it also encourages a response signal or backscatter wave from the RFID tag related to the condition of the monitored organ or body part. A wide range of frequencies are used for RFID applications, from as low as 13.56 MHz for monitoring simple activities to 26.5 through 40.0 GHz for smart skins and Internet of Things (IoT) applications. The design and format of the RFID antenna will depend on the operating frequency range and the intended functions of the RFID tags, especially when matching the impedance of any RFID semiconductor devices incorporated in the RFID tags.

Miniaturization is a key goal in the design of antennas for RFID tags. Perhaps as important for any wearable device, the antennas must support long-term safety against their radiated electromagnetic (EM) fields and comply with guidelines established by leading international safety organizations. A number of fabrication methods have been developed for safe, reliable RFID antennas, including e-thread embroidery on fabric substrates, inkjet printing on flexible substrates such as paper and plastics, and screen-printing of conductive polymer thick films on fabric substrates.

As the researchers note in their review of different RFID tag antennas, the markets for wearable and implantable RFID devices is growing at a phenomenal rate for applications such as smart homes, healthcare, and child monitoring across the commercial, military, and industrial sectors. Many applications are already in use, but the number of potential future applications for RFID-based tracking/monitoring using both worn and implanted devices is motivating much design work into smaller and more efficient RFID antennas on different substrates.

See “RFID Antennas for Body-Area Applications,” IEEE Antennas & Propagation Magazine, Vol. 60, No. 5, October 2018, pp. 14-25.

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...

Guide to VNA Automation in MATLAB Using the TCP Interface

April 19, 2024
In this guide, advantages of using MATLAB with TCP interface is explored. The how-to is also covered for setting up automation language using a CMT VNA.