Harmonic Radars Search for Hidden Devices

March 4, 2016
Harmonic radar systems are useful for analyzing semiconductor quality as well as for surveillance, with their capability to “see” through walls.

Harmonic radars have long held the promise of detecting devices at higher frequencies, although designing such systems involves tight control of internally generated harmonic and spurious signals. To aid in the detection of small, hidden electronic devices, researchers at the Sensor and Antenna Systems Group at the Informatics and Information Security Research Center of the Scientific and Technological Research Council of Turkey, Gebze, Turkey, presented the design and implementation of a portable harmonic radar.

This radar boasts transmit capability from 1.95 to 2.05 GHz and a receive range from 3.90 to 6.15 GHz, with the capability to receive signals as high as third-order harmonics. The portable system features +32-dBm transmit power and -103-dBm receiver sensitivity. The harmonic radar system can discriminate semiconductor targets from corrosive metals, as well as detect a semiconductor target as small as 1.85 × 1.85 cm at a distance of more than 50 cm.

Harmonic radar systems are also referred to as nonlinear junction detectors (NLJDs). They have been designed for the purpose of hidden electronic devices in walls and furniture that might have been implanted for use as surveillance devices, or “bugs.” An NLJD-based system is based on employing the nonlinearity of electronic devices because of the p-n junctions of their active devices, such as diodes and transistors. These semiconductor junctions will reradiate received high-frequency energy at double or triple the frequency, and those harmonic frequencies can be received by a sensitive receiver operating in the proper frequency range.

Unfortunately, harmonic radars are particularly susceptible to false alarms from internal system harmonic leakage, corrosive or junction metals in the scanned area, and harmonic reflectors in the scanned area. The researchers developed their system to operate at multiple transmit frequencies to reduce the occurrence of false alarms. The harmonic radar system includes transmit and receive antennas, transmitter and receiver circuits, a 10-MHz oven-controlled crystal oscillator (OCXO), a digitizer, and a central processing unit (CPU) to run software and a graphical user interface (GUI) for the radar.

The transmit and receive circuit blocks were well isolated to reduce the effects of signal leakage. Transmit and receive filters also contribute a great deal to the excellent performance of the harmonic radar system, with the transmit filter helping to reduce the level of harmonics emitted by the transmitter and the receive filter reducing the level of transmitted signals to the receiver. See “Getting the Bugs Out,” IEEE Microwave Magazine, November 2015, p. 40.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.
About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Wideband MMIC LNA with Bypass

June 6, 2024
Mini-Circuits’ TSY-83LN+ wideband, MMIC LNA incorporates a bypass mode feature to extend system dynamic range. This model operates from 0.4 to 8 GHz and achieves an industry leading...

Expanded Thin-Film Filter Selection

June 6, 2024
Mini-Circuits has expanded our line of thin-film filter topologies to address a wider variety of applications and requirements. Low pass and band pass architectures are available...

Mini-Circuits CEO Jin Bains Presents: The RF Engine of the 21st Century

June 6, 2024
In case you missed Jin Bains' inspiring keynote talk at the inaugural IEEE MTT-S World Microwave Congress last week, be sure to check out the session recording, now available ...

Selecting VCOs for Clock Timing Circuits A System Perspective

May 9, 2024
Clock Timing, Phase Noise and Bit Error Rate (BER) Timing is critical in digital systems, especially in electronic systems that feature high-speed data converters and high-resolution...