The trial took place March 12 2014 during the NASCAR Sprint Cup Series March Phoenix Race Photo courtesy of NASCAR

LTE-TDD Small-Cell Network Demonstrated at NASCAR Raceway

March 6, 2014
Qualcomm, Sprint, and NASCAR recently demonstrated a Long Term Evolution (LTE) time-division duplex (TDD) hyper-dense small-cell network to satisfy mobile data demand.

Although conventional macro cell towers provide excellent wide-area wireless-communications coverage, the deployment of small-cell networks offers a more cost-effective solution that delivers high levels of mobile data capacity to both indoor and outdoor venues. Qualcomm Technologies, in collaboration with Sprint and NASCAR, recently demonstrated the second phase of an over-the-air trial of a Long Term Evolution (LTE) time-division-duplex (TDD) hyper-dense small-cell network.

The Phoenix International Raceway was chosen as the venue for the demonstration because of its large fan attendance during NASCAR races and the challenging radio frequency (RF) conditions and high demand for mobile data during the events. For the trial, Qualcomm installed 31 small-cell base stations in the garage area of the raceway to test density limits, measure network performance capabilities, and quantify the potential impact on users’ mobile-communications experiences. The hyper-dense network had an equivalent density of 1000 cells/km2 and operated on Sprint’s band 41 LTE-TDD spectrum.

The network was built with Airspan’s AirSynergy 2000 LTE-Advanced Pico Base Stations, which are powered by Qualcomm’s small-cell chipsets and UltraSON (Self Organizing Network) technology. The combination of technologies was previously demonstrated in November, 2013 to show improvement of wireless data performance and quality of service (QoS) while reducing signaling load to the network.

Although it has proven to be a viable solution for wireless backhaul applications, small-cell networks still have some challenges to overcome (see Wireless-Backhaul Strategies Focus On Small-Cell Networks on Microwaves & RF). The technology’s low installation costs, modest physical footprint, and potential to relieve pressure put on macro networks, however, has become a building block for next-generation networks.

About the Author

Iliza Sokol | Associate Digital Editor

Iliza joined the Penton Media group in 2013 after graduating from the Fashion Institute of Technology with a BS in Advertising and Marketing Communications. Prior to joining the staff, she worked at NYLON Magazine and a ghostwriting firm based in New York.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...