Three smartphones which are destined to become lowcost satellites rode to space last month on the maiden flight of Orbital Science Corps Antares rocket It was launched from NASAs Wallops Island Flight Facility in Virginia

Smartphones Prove Their Worth As Satellites

May 9, 2013
Three smartphones, which are destined to become low-cost satellites, rode to space last month on the maiden flight of Orbital Science Corp.’s Antares rocket. It was launched from NASA’s Wallops Island Flight Facility in Virginia.

When a rocket was launched by NASA last month, it brought three smartphone satellites into orbit (see photo). This move was part of NASA’s PhoneSat mission, which is tasked with determining whether a consumer-grade smartphone can be used as the main avionics of an inexpensive satellite. The satellites—comprised mainly of the smartphones—will send information about their health back to Earth. They also will attempt to take pictures of Earth using their cameras.

Transmissions from all three “PhoneSats” were received at multiple ground stations on Earth, indicating that they were operating normally. Large images are transmitted in small chunks and then reconstructed through a distributed ground station network. The PhoneSats remained in orbit for close to two weeks and were monitored to verify continuous operation.

For this mission, each smartphone is housed in a standard cubesat structure that measures about 4 in.2 Its smartphone acts as the satellite’s on-board computer. The smartphone’s sensors are used for attitude determination while the camera performs Earth observation. The off-the-shelf PhoneSats include many systems that are required for a satellite, such as fast processors, versatile operating systems (OSs), multiple miniature sensors, high-resolution cameras, Global Positioning System (GPS) receivers, and several radios.

These spacecraft are probably the lowest-cost satellites to ever be flown in space. NASA engineers kept total component cost for the three prototype PhoneSat satellites to between $3500 and $7000. In addition to using primarily commercial electronic hardware, they kept the design and mission objectives to a minimum. The mission hardware is the Google-HTC Nexus One smartphone, which runs the Android OS.

Some parts did need to be added to the smartphones, such as a larger, external lithium-ion battery bank. They also require a more powerful radio for the messages that they will send from space. The smartphones’ ability to send and receive calls and text messages was disabled for the mission.

About the Author

Nancy Friedrich | Editor-in-Chief

Nancy Friedrich began her career in technical publishing in 1998. After a stint with sister publication Electronic Design as Chief Copy Editor, Nancy worked as Managing Editor of Embedded Systems Development. She then became a Technology Editor at Wireless Systems Design, an offshoot of Microwaves & RF. Nancy has called the microwave space “home” since 2005.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications