Ga Npromo 5e83ab865d310

Bump Up Semiconductor Efficiency with GaN (.PDF Download)

March 26, 2020

Gallium nitride (GaN) is quickly becoming the semiconductor material of choice for both RF/microwave and higher-wavelength devices. It has long been a semiconductor foundation for light-emitting diodes (LEDs) and has appeared as recently at the 2020 Consumer Electronics Show (CES) as the latest semiconductor technology for home battery chargers. The technology has perhaps its longest history in the RF/microwave industry in high-frequency semiconductor devices, where it serves as the active device replacement for traveling-wave tubes (TWTs) in high-power pulsed radar systems.

With a wide bandgap of 3.4 eV, GaN supports active devices with extremely fast switching speeds and high power levels. It features a large breakdown voltage, supporting highly efficient and compact pulsed amplifiers that achieve high output power levels in relatively small packages. In the simplest terms, GaN is capable of higher power density and efficiency in a smaller package than silicon (Si) or gallium-arsenide (GaAs) semiconductors.

Sponsored Recommendations

Forging the Future of Defense

Raytheon’s Advanced Technology team incubates capabilities that fuel the future of defense. Together with leading research and development organizations, def...

Phase-Matched Cable Assemblies

Phase-matched cable assemblies are ubiquitous, and growing in popularity. Electrical length matching requirements continue to tighten and the mechanical precision of cable construction...

3 New Wideband MMIC LNAs Cover 5.5 to 20 GHz

Mini-Circuits’ expanded PMA3-series of wideband, ultra-low NF MMIC amplifiers operates in ranges between 5.5 and 20 GHz.

Wideband Amplifiers Variable and Temperature-Compensated Gain

Many types of RF systems and applications that span from the upper end of microwave frequencies to the lower end of mmWave have arisen in recent years. Meeting system requirements...