CMOS

CMOS Yields 860-GHz Sensor

Sept. 26, 2017
A highly integrated CMOS sensor detects energy at 860 GHz.

Exotic semiconductor technologies are often associated with devices functioning at terahertz frequencies (above 300 GHz). But researchers working at the State Key Laboratory of Superlattices and Microstructures of the Institute of Semiconductors of the Chinese Academy of Sciences have developed an 860-GHz sensor based on a 180-nm standard silicon CMOS process. The sensor integrates an NMOS terahertz detector, a low-noise chopper instrumentation amplifier, and a high-resolution delta-sigma analog-to-digital converter (ADC). The detector consists of an on-chip grounded patch antenna and a source-feeding NMOS field-effect transistor (FET), with microstrip transmission line to improve the power transfer efficiency between the antenna and the FET.

The researchers performed theoretical analysis through modeling to better understand the operation and possible optimization of the CMOS sensor. Optimum impedance matching between the antenna and the FET was achieved through careful design of the interconnecting microstrip transmission lines. The detector is actually a 3 × 5 array of different detectors, with an optimum reading taken from one detector in the array at a time.

The device relies on a readout circuit to translate signals from the individual detector elements. The readout circuit consists of a low-noise chopper instrumentation amplifier and a high-resolution delta-sigma ADC. When used as part of an imaging system—whether used at oversampling rates of 8,192 or 1,024—the terahertz detector captured clear images of much different materials, such as pieces of metal and tree leaves illuminated by terahertz energy. The sensor shows the capability to detect continuous terahertz waves reflecting off such images and offers great potential in highly integrated raster-scanning imaging systems.

See “CMOS Fully Integrated 860-GHz Terahertz Sensor,” IEEE Transactions on Terahertz Science and Technology, Vol. 7, No. 4, July 2017, p. 455.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...