Courtesy of Justin SullivanGetty Images

Small Cells and CRAN… Working Together?

Aug. 28, 2014
Courtesy of Justin Sullivan/Getty Images

Small Cells and Cloud-RAN (CRAN) have always been opposing forces, but they may be able to combine their strengths to create a diverse, applicable network for high-density mobile devices. A new report by Mobile Experts describes how the competing architectures could turn into a heterogeneous network.

The differences between Small Cells and CRAN are stark. Small Cells are low cost and easy to plan. CRAN runs on fiber, delivering the high density and high capacity lacking in Small Cells. However, there’s still somewhat limited access to a fiber network.

Principle analyst at Mobile Experts Joe Madden says, “CRAN has tight baseband coordination with low latency between baseband processers for radio cells, while Small Cells distribute the baseband.” Small Cells have autonomous baseband processors, whereas CRAN can effectively coordinate multipoint reception. Putting a cloud-based network in the mix could help coordinate and exploit the advanced features of LTE.

Problems in uniting the two architectures center on Layers 1-3 (the media layers). Partitioning different functions between Layers 1-3 typically trips up the scheduling function of layer 2 (the data link layer). By re-partitioning the Layer 1-3 processing, however, the work load moves from small cells and behaves like the cloud. The technique opens the door to the coexistence of Small Cells and CRAN.

“The more advanced way is to enable some coordination between the two,” says Madden. “Make changes in the MAC scheduler and listen to what’s going in through the cloud and make changes accordingly.”

More information is available in Mobile Expert’s report: An Unlikely Marriage: Cloud RAN and Small Cells. The report details the approach and the ensuing benefits from the convergence.

About the Author

Sarah Mangiola

Sarah Mangiola has written on many different topics within Penton's Design, Engineering, and Sourcing Group. Originally from California, she graduated from the University of California, Davis with a B.A. in political science. 

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...