Divide-By-Three ILFDs Operate Beyond 280 GHz

June 24, 2013
Work on frequency dividers has led to G-band (140~220 GHz) and H-band (220~325 GHz) divide by 3 injection locked frequency dividers (ILFDs), which can be used in a millimeter wave PLL.

In millimeter-wave phase-locked loops (PLLs), the following divider chain must meet demanding performance requirements. An injection-locked frequency divider (ILFD) can be a good choice for these PLLs for its high input sensitivity, low power, and high speed. In addition to suffering from a limited locking range, however, it is sensitive to process variations. At National Taiwan University, Pin-Hao Feng and Shen-Iuan Liu investigated divide-by-3 ILFDs, proposing one with second-harmonic peaking to enhance the locking range.

Their four divide-by-3 ILFDs are fabricated in 40-nm CMOS technology. A distributed inductor technique is used to enhance both operating frequency and locking range. Among those four dividers, the largest measured locking range is 236.6~245.3 GHz. Operating frequencies reached beyond 280 GHz. All four ILFDs consume 2.97~3.96 mW from a 1.1-V supply, excluding output buffers.

The proposed divide-by-3 ILFDs are realized by a NMOS cross-coupled pair, two injection-locked NMOS transistors, a PMOS current source, and three inductors. To generate the second harmonic, two injection-locked transistors are connected in series and act as the mixers. That harmonic is further enhanced by the addition of a peaking inductor to a parasitic capacitor. To save on area, the researchers found that a rectangular-shaped inductor was a better choice than a square one. Among the products of this research are G-band (140~220 GHz) and H-band (220~325 GHz) divide-by-3 ILFDs, which can be used in a millimeter-wave PLL over 200 GHz for point-to-point applications. See “Divide-by-Three Injection-Locked Frequency Dividers Over 200 GHz in 40-nm CMOS,” IEEE Journal Of Solid-State Circuits, Feb. 2013, p. 405.

About the Author

Nancy Friedrich | Editor-in-Chief

Nancy Friedrich began her career in technical publishing in 1998. After a stint with sister publication Electronic Design as Chief Copy Editor, Nancy worked as Managing Editor of Embedded Systems Development. She then became a Technology Editor at Wireless Systems Design, an offshoot of Microwaves & RF. Nancy has called the microwave space “home” since 2005.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications