10-Gb/s Linear Burst-Mode Receiver Reaches 85 dBΩ Gain

June 25, 2013
This linear burst mode receiver, which provides impressive linearity, sensitivity, dynamic range, and preamble length, was designed in 0.25 μm SiGe:C BiCMOS technology.

In long-reach passive optical networks (PONs), dispersion compensation is required because of the long reach and high bit rates. To enable such compensation, a team of researchers from Ireland’s Tyndall National Institute and University College Cork has developed circuitry for fast gain adaptation in a linear burst-mode receiver (BMRx). Their 10-Gb/s BMRx boasts impressive linearity over a dynamic range beyond 20 dB. It therefore enables electronic dispersion compensation or multilevel modulation formats in bursty optical inks. This receiver is the work of Peter Ossieur, Nasir A. Quadir, Stefano Porto, Cleitus Antony, Wei Han, Marc Rensing, Peter O’Brien, and Paul D. Townsend.

Their LBMRx, which comprises a variable-gain transimpedance amplifier (TIA) and variable-gain post amplifier, achieves gain of 47 to 85 dBΩ on a single die. At 84 dBΩ, such gain allows for the elimination of the post-amplifier chip. To perform gain adjustment in less than 50 ns, the LBMRx uses replica-based, feed-forward automatic gain control (AGC) and peak detectors. Those detectors are reset between bursts using an external reset signal. Using a PIN photodiode, sensitivity of -23.2 dBm was measured at a bit-error rate (BER) of 1.1 x 10-3. Because a 0.5-dB penalty is incurred if a 0-dBm burst precedes the burst under consideration, the LBMRx can support a dynamic range of 22.7 dB. See “A 10 Gb/s Linear Burst-Mode Receiver in 0.25 μm SiGe:C BiCMOS,” IEEE Journal Of Solid-State Circuits, Feb. 2013, p. 381.

Sponsored Recommendations

Guide to VNA Automation in MATLAB Using the TCP Interface

April 19, 2024
In this guide, advantages of using MATLAB with TCP interface is explored. The how-to is also covered for setting up automation language using a CMT VNA.

In-Circuit Antenna Verification

April 19, 2024
In this video, Brian Walker, Senior RF Design Engineer at Copper Mountain Technologies, shows how there can be significant variation of the performance of a PCB-mounted antenna...

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...