Modular SoC Design Integrates RF Transceiver In 32-nm Process

April 29, 2013
This system on a chip (SoC) integrates diverse digital, analog, and RF blocks on a single die, allowing the RF transceiver and associated RF front end to co-exist with the rest of the SoC while maintaining RF performance.

Because of incompatible process features and the challenges of managing system noise, the RF portion of a WiFi radio still tends to be an external personal-computer (PC) component. Impressively, however, researchers at Intel Corp. have created an integrated, standard x86 operating-system-compliant, dual-core ATOM-processor-based system-on-a-chip (SoC) that includes the WiFi RF transceiver. This SoC is designed for rapid integration and customization for specific market segments. As such, it boasts a multi-source intellectual-property (IP) ecosystem, which comprises both modular and configurable building blocks.

A standardized SoC interface is used to reduce design time while allowing the integration of diverse IP blocks. It implements a custom interconnect fabric called Intel On-Chip System Fabric (IOSF), which provides a standardized interface supporting signaling, decoding, flow control, and power management of IP. It also can support industry-standard buses. 

During 2.4-GHz IEEE 802.11g operation, the RF transceiver offers receive sensitivity of -74 dBm, an input third-order intercept point of -8 dBm, and transmit output power of +20.3 dBm (-25 dB error vector magnitude) at 14% transmit RF efficiency. Boosting integration, the SoC houses PCI-e Gen 2, DDR3, legacy I/O, voltage regulators, clock generation, power management, a memory controller, and the RF portion of the WiFi transceiver. This feat is managed in a 32-nm high-k/metal-gate RF CMOS process fabricated on a high resistivity substrate.

This impressive development is the brainchild of the following individuals: Hasnain Lakdawala; Mark Schaecher; Chang-Tsung Fu; Rahul Limaye; Jon Duster; Yulin Tan; Ajay Balankutty; Erkan Alpman; Chun C. Lee; Khoa Minh Nguyen; Hyung-Jin Lee; Ashoke Ravi; Satoshi Suzuki; Brent R. Carlton; Hyung Seok Kim; Marian Verhelst; Stefano Pellerano; Tong Kim; Satish Venkatesan; Durgesh Srivastava; Peter Vandervoorn; Jad Rizk; Chia-Hong Jan; Sunder Ramamurthy; Raj Yavatkar; and Krishnamurthy Soumyanath. See “A 32 nm SoC with Dual Core ATOM Processor and RF WiFi Transceiver,” IEEE Journal Of Solid-State Circuits, Jan. 2013, p. 91.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...