Modular SoC Design Integrates RF Transceiver In 32-nm Process
Because of incompatible process features and the challenges of managing system noise, the RF portion of a WiFi radio still tends to be an external personal-computer (PC) component. Impressively, however, researchers at Intel Corp. have created an integrated, standard x86 operating-system-compliant, dual-core ATOM-processor-based system-on-a-chip (SoC) that includes the WiFi RF transceiver. This SoC is designed for rapid integration and customization for specific market segments. As such, it boasts a multi-source intellectual-property (IP) ecosystem, which comprises both modular and configurable building blocks.
A standardized SoC interface is used to reduce design time while allowing the integration of diverse IP blocks. It implements a custom interconnect fabric called Intel On-Chip System Fabric (IOSF), which provides a standardized interface supporting signaling, decoding, flow control, and power management of IP. It also can support industry-standard buses.
During 2.4-GHz IEEE 802.11g operation, the RF transceiver offers receive sensitivity of -74 dBm, an input third-order intercept point of -8 dBm, and transmit output power of +20.3 dBm (-25 dB error vector magnitude) at 14% transmit RF efficiency. Boosting integration, the SoC houses PCI-e Gen 2, DDR3, legacy I/O, voltage regulators, clock generation, power management, a memory controller, and the RF portion of the WiFi transceiver. This feat is managed in a 32-nm high-k/metal-gate RF CMOS process fabricated on a high resistivity substrate.
This impressive development is the brainchild of the following individuals: Hasnain Lakdawala; Mark Schaecher; Chang-Tsung Fu; Rahul Limaye; Jon Duster; Yulin Tan; Ajay Balankutty; Erkan Alpman; Chun C. Lee; Khoa Minh Nguyen; Hyung-Jin Lee; Ashoke Ravi; Satoshi Suzuki; Brent R. Carlton; Hyung Seok Kim; Marian Verhelst; Stefano Pellerano; Tong Kim; Satish Venkatesan; Durgesh Srivastava; Peter Vandervoorn; Jad Rizk; Chia-Hong Jan; Sunder Ramamurthy; Raj Yavatkar; and Krishnamurthy Soumyanath. See “A 32 nm SoC with Dual Core ATOM Processor and RF WiFi Transceiver,” IEEE Journal Of Solid-State Circuits, Jan. 2013, p. 91.
About the Author

Nancy Friedrich
RF Product Marketing Manager for Aerospace Defense, Keysight Technologies
Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.