Modular SoC Design Integrates RF Transceiver In 32-nm Process

April 29, 2013
This system on a chip (SoC) integrates diverse digital, analog, and RF blocks on a single die, allowing the RF transceiver and associated RF front end to co-exist with the rest of the SoC while maintaining RF performance.

Because of incompatible process features and the challenges of managing system noise, the RF portion of a WiFi radio still tends to be an external personal-computer (PC) component. Impressively, however, researchers at Intel Corp. have created an integrated, standard x86 operating-system-compliant, dual-core ATOM-processor-based system-on-a-chip (SoC) that includes the WiFi RF transceiver. This SoC is designed for rapid integration and customization for specific market segments. As such, it boasts a multi-source intellectual-property (IP) ecosystem, which comprises both modular and configurable building blocks.

A standardized SoC interface is used to reduce design time while allowing the integration of diverse IP blocks. It implements a custom interconnect fabric called Intel On-Chip System Fabric (IOSF), which provides a standardized interface supporting signaling, decoding, flow control, and power management of IP. It also can support industry-standard buses. 

During 2.4-GHz IEEE 802.11g operation, the RF transceiver offers receive sensitivity of -74 dBm, an input third-order intercept point of -8 dBm, and transmit output power of +20.3 dBm (-25 dB error vector magnitude) at 14% transmit RF efficiency. Boosting integration, the SoC houses PCI-e Gen 2, DDR3, legacy I/O, voltage regulators, clock generation, power management, a memory controller, and the RF portion of the WiFi transceiver. This feat is managed in a 32-nm high-k/metal-gate RF CMOS process fabricated on a high resistivity substrate.

This impressive development is the brainchild of the following individuals: Hasnain Lakdawala; Mark Schaecher; Chang-Tsung Fu; Rahul Limaye; Jon Duster; Yulin Tan; Ajay Balankutty; Erkan Alpman; Chun C. Lee; Khoa Minh Nguyen; Hyung-Jin Lee; Ashoke Ravi; Satoshi Suzuki; Brent R. Carlton; Hyung Seok Kim; Marian Verhelst; Stefano Pellerano; Tong Kim; Satish Venkatesan; Durgesh Srivastava; Peter Vandervoorn; Jad Rizk; Chia-Hong Jan; Sunder Ramamurthy; Raj Yavatkar; and Krishnamurthy Soumyanath. See “A 32 nm SoC with Dual Core ATOM Processor and RF WiFi Transceiver,” IEEE Journal Of Solid-State Circuits, Jan. 2013, p. 91.

About the Author

Nancy Friedrich | Editor-in-Chief

Nancy Friedrich began her career in technical publishing in 1998. After a stint with sister publication Electronic Design as Chief Copy Editor, Nancy worked as Managing Editor of Embedded Systems Development. She then became a Technology Editor at Wireless Systems Design, an offshoot of Microwaves & RF. Nancy has called the microwave space “home” since 2005.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications