Integrated BiCMOS Chip Set Covers 400 GHz

Jan. 22, 2013
Pushing terahertz development forward, substrate-integrated-waveguide (SIW) antennas were recently integrated with active circuits in CMOS/BiCMOS.

Most of today’s CMOS/BiCMOS designs for terahertz applications target the circuit blocks. This is especially true of the terahertz fundamental-frequency oscillators. In an impressive feat, however, substrate-integrated-waveguide (SIW) antennas have been integrated with active terahertz circuits in CMOS/BiCMOS by a group of researchers at Singapore’s Institute of Microelectronics, A*STAR. The team includes Sanming Hu; Yong-Zhong Xiong (now with MicroArray Technologies); Bo Zhang (now with Xi’an University of Posts and Telecommunciations); Lei Wang (now with the University of Electronic Science and Technology of China); Teck-Guan Lim (now with JDS Uniphase Corp.); Minkyu Je; and Mohammad Madihian.

The researchers’ terahertz transmitter (Tx) and receiver (Rx) chipset operates at roughly 400 GHz in 0.13-μm silicon-germanium (SiGe) BiCMOS technology. In the transmit chip, the SIW antenna also works as a high-pass filter. In doing so, it keeps the unwanted harmonics from being radiated out of the chip. The key is the SIW antenna’s high-pass filtering characteristic, which enables it to suppress the unwanted fundamental and second harmonic signals by 50 and 30 dB, respectively. In addition to the SIW antenna, the transmit chip houses a voltage-controlled oscillator (VCO), buffer, modulator, power amplifier (PA), and frequency tripler.

For its part, the receive chip contains an SIW antenna with a tunable bandwidth. It is integrated with a two-mode subharmonic mixer, which achieves conversion loss that is ~5 dB lower than the loss suffered by conventional designs. The receive chip consumes 50 nA from a 1.2-V supply.

To improve performance, the researchers created some novel function blocks. For instance, they found that the transmitter’s output power could be raised to ~0 dBm or higher by using a high-power VCO and their redesigned amplifier, which provided gain of ~20 dB at 140 GHz. See “A Si-Ge BiCMOS Transmitter/Receiver Chipset with On-Chip SIW Antennas for Terahertz Applications,” IEEE Journal of Solid-State Circuits, Nov. 2012, p. 2654.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...