LDMOS FETs Power WiMAX Base Stations

April 14, 2006
These silicon LDMOS devices are the first power FETs to achieve the performance required for 3.5-GHz WiMAX base-station power amplifiers.

Powering a WiMAX base station is not a trivial matter. The wireless application occupies the 3.5-GHz band among others, which is too high in frequency for traditional RF transistors and too high in power for most microwave devices. In the 2.5 GHz WiMAX band, power-amplifier (PA) designers have been able to choose from both silicon LDMOS FETs and compound semiconductor devices such as GaAs FETs. But the silicon devices have lacked the power, linearity, and efficiency of their higher-priced GaAs counterparts at higher frequency. That is, until Freescale Semiconductor developed a "WiMAX-worthy" LDMOS device capable of the power, efficiency, and linearity needed for 3.5-GHz WiMAX PA applications.

These new LDMOS FETs have demonstrated performance as high as 3.8 GHz. But bandwidth alone is not enough to satisfy WiMAX requirements at 3.5 GHz. WiMAX employs 64-state quadrature amplitude modulation (64QAM) and orthogonal frequency-division multiplexing (OFDM), which together demand exceptionally high linearity. WiMAX systems also require good error-vector-magnitude (EVM) performance as a benchmark of modulation fidelity.

For improved linearity, most power devices are used "backed off" from maximum power levels. When backed off, the new LDMOS devices from Freescale provide higher average power than many comparable GaAs devices. The new Freescale LDMOS lineup includes the models MRF7S38010H, MRF7S38040H, and MRF7S38075H (see figure), with 10, 40, and 75 W of peak output power, respectively. These devices provide average power levels of 2, 8, and 16 W from 3.4 to 3.8 GHz when tested using the 7-MHz-wide WiMAX IEEE 802.16 signal (see table).

The cost of these new LDMOS devices is about 30 to 80 percent less than compound semiconductor devices with comparable performance. Over the cost of an entire WiMAX system, the savings by using LDMOS can be quite large.

As impressive as this increase in LDMOS frequency range might be, Freescale has chosen to pursue parallel development paths to serve WiMAX, devoting considerable resources to producing GaAs PHEMT devices that meet similarly demanding requirements. Freescale is also developing GaN technology for high-frequency, high-power applications through 6 GHz.

The three new LDMOS devices operate-at +28 VDC, are internally matched, and housed in a low-thermal-resistance package with integrated electrostatic-discharge (ESD) protection. Freescale Semiconductor; (800) 521-6274, Internet: www.freescale.com/rf.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.