Imaging Chipset Uses 140-GHz Atmospheric Window

Dec. 20, 2010
Every physical body produces natural emissions, which may be detected and used for imaging applications. For passive millimeter-wave imaging applications, it is ideal to use broadband millimeterwave receivers that function within atmospheric ...

Every physical body produces natural emissions, which may be detected and used for imaging applications. For passive millimeter-wave imaging applications, it is ideal to use broadband millimeterwave receivers that function within atmospheric windows. A heterodyne receiver chipset using the 140-GHz atmospheric window has been presented by Stefan Koch and Shin Saito from Sony Deutschland GmbH together with Marc Guthoerl from Thermo Fisher Scientific, Ingmar Kallfass from Karlsruhe Institute of Technology, and Arnulf Leuther from the Fraunhofer Institute of Applied Solid-State Physics.

At the heart of this chipset are two millimeterwave monolithic integrated circuits (ICs), which make it possible to have different voltage-controlled- oscillator (VCO) millimeter-wave monolithic ICs with the receiver. The receiver includes a low-noise amplifier (LNA), downconversion mixer, frequency multiplier, and local-oscillator (LO) buffer amplifier with an LO distribution network. The other IC is the VCO, which covers a band around 35 GHz to generate the LO signal for the receiver chip. From 120 to 145 GHz, the receiver demonstrates a flat conversion gain from -1 to +2 dB while consuming 120 mW. The VCO is tunable from 31 to 37 GHz with associated output power ranging from -2 to +1 dBm.

To guarantee stable isolation and avoid loadpulling effects, the VCO is decoupled with a VCO buffer amplifier. This single-stage, variable-gain amplifier fine tunes the oscillator's signal power level. In addition, the VCO signal at the output of the buffer amplifier is divided into two equal paths using a folded 35-GHz Wilkinson power divider. See "A 120-145 GHz Heterodyne Receiver Chipset Utilizing the 140 GHz Atmospheric Window for Passive Millimeter-Wave Imaging Applications," IEEE Journal Of Solid-State Circuits, October 2010, p. 1961.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...