Imaging Chipset Uses 140-GHz Atmospheric Window

Dec. 20, 2010
Every physical body produces natural emissions, which may be detected and used for imaging applications. For passive millimeter-wave imaging applications, it is ideal to use broadband millimeterwave receivers that function within atmospheric ...

Every physical body produces natural emissions, which may be detected and used for imaging applications. For passive millimeter-wave imaging applications, it is ideal to use broadband millimeterwave receivers that function within atmospheric windows. A heterodyne receiver chipset using the 140-GHz atmospheric window has been presented by Stefan Koch and Shin Saito from Sony Deutschland GmbH together with Marc Guthoerl from Thermo Fisher Scientific, Ingmar Kallfass from Karlsruhe Institute of Technology, and Arnulf Leuther from the Fraunhofer Institute of Applied Solid-State Physics.

At the heart of this chipset are two millimeterwave monolithic integrated circuits (ICs), which make it possible to have different voltage-controlled- oscillator (VCO) millimeter-wave monolithic ICs with the receiver. The receiver includes a low-noise amplifier (LNA), downconversion mixer, frequency multiplier, and local-oscillator (LO) buffer amplifier with an LO distribution network. The other IC is the VCO, which covers a band around 35 GHz to generate the LO signal for the receiver chip. From 120 to 145 GHz, the receiver demonstrates a flat conversion gain from -1 to +2 dB while consuming 120 mW. The VCO is tunable from 31 to 37 GHz with associated output power ranging from -2 to +1 dBm.

To guarantee stable isolation and avoid loadpulling effects, the VCO is decoupled with a VCO buffer amplifier. This single-stage, variable-gain amplifier fine tunes the oscillator's signal power level. In addition, the VCO signal at the output of the buffer amplifier is divided into two equal paths using a folded 35-GHz Wilkinson power divider. See "A 120-145 GHz Heterodyne Receiver Chipset Utilizing the 140 GHz Atmospheric Window for Passive Millimeter-Wave Imaging Applications," IEEE Journal Of Solid-State Circuits, October 2010, p. 1961.

About the Author

Nancy Friedrich | Editor-in-Chief

Nancy Friedrich began her career in technical publishing in 1998. After a stint with sister publication Electronic Design as Chief Copy Editor, Nancy worked as Managing Editor of Embedded Systems Development. She then became a Technology Editor at Wireless Systems Design, an offshoot of Microwaves & RF. Nancy has called the microwave space “home” since 2005.

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications