Image

Reject the Second Harmonic with Microstrip Side-Coupled Filters

Nov. 5, 2015
Adding notch filter elements can significantly improve the second-harmonic rejection of microstrip side-coupled filters.

Filters used in communication systems must reject unwanted signals from propagating through a network. One instance of these unwanted signals occurs when driving an amplifier into nonlinear operation, thereby producing spectral components at harmonic frequencies. Although microstrip side-coupled filters are widely utilized, they provide limited second-harmonic rejection.

In a four-page application note titled, "Improving the Second-harmonic Passband Rejection of Microstrip Side-coupled Filters," National Instruments demonstrates a solution to improve the second-harmonic rejection of this filter class. This technique incorporates notch elements into the design of a side-coupled filter without significantly affecting its passband response.

The application note first presents a side-coupled filter that’s built from several sections of coupled transmission lines. Each section in this filter is offset from the previous one, leading to a wide footprint. The NI AWR Design Environment filter synthesis tool is used to create the initial filter design based on user-defined characteristics, such as passband frequencies, passband ripple, and stopband rejection.

To achieve a narrower footprint, transmission lines are added between the coupled-line pairs in the design example. This, in turn, allows the filter to be housed in a narrower waveguide, eliminating the possibility of second-harmonic waveguide-mode propagation. To implement notch filtering, open-circuited microstrip stubs are added to the design. These stubs are a quarter-wavelength long at the second harmonic of the passband’s center frequency, enabling the unwanted second harmonic to be rejected.

Thanks to the narrower footprint, the filter can be housed in a WR-22 waveguide. The app note presents the filter’s frequency response both with and without the waveguide. The results demonstrate greater than 50-dB second-harmonic rejection. In addition, coax connectors are modeled using the Analyst three-dimensional (3D) finite-element method (FEM) simulator in the NI AWR design environment. The coax connecters are then incorporated into a complete simulation model, which is presented along with the simulation results. Lastly, for comparison purposes, the same filter is simulated inside a WR-42 waveguide. In this case, the second-harmonic rejection is 30 dB worse due to the waveguide effect.

National Instruments Corp., 11500 N Mopac Expwy., Austin, TX 78759-3504; (877) 388-1952

Sponsored Recommendations

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...

Turnkey 1 kW Energy Source & HPA

July 12, 2024
Mini-Circuits’ RFS-2G42G51K0+ is a versatile, new generation amplifier with an integrated signal source, usable in a wide range of industrial, scientific, and medical applications...

SMT Passives to 250W

July 12, 2024
Mini-Circuits’ surface-mount stripline couplers and 90° hybrids cover an operational frequency range of DC to 14.5 GHz. Coupler models feature greater than 2 decades of bandwidth...

Transformers in High-Power SiC FET Applications

June 28, 2024
Discover SiC FETs and the Role of Transformers in High-Voltage Applications