Mwrf 1708 Mw0115rd Fig 3promo 0

Printing Wireless IoT Sensors

Jan. 23, 2015
Researchers from Toulouse, France, use inkjet printers to deposit carbon nanotubes on paper and other organic substrates, thus enabling IoT smart skins and zero-power electronics.
The biomimicry of this inkjet-printed sensor platform aids the sensors in more accurately measuring the conditions of plant life.

Given the Internet of Things’ (IoT) need for low-power and wide environmental functionality in its technology, it may require design techniques like ambient power harvesting, ruggedness, and flexibility via conformal substrates. To gain greater understanding of batteryless IoT applications, A. Traille, A. Georgiadis, A. Collado, Y. Kawahara, H. Aubert, and M.M. Tentzeris have designed a scalable, low-cost, and ink-jet-printed wireless sensor platform. The team used several different 2D and 3D additive manufacturing techniques to test the eco-friendly operability of their devices.

To realize the microwave operation of inkjet-printed circuits on substrates, some commercial-off-the-shelf (COTS) components were used instead of organic thin-film transistors (OTFTs). Because OTFTs do not provide adequate performance when operating in the gigahertz range, discrete components fill the design gap. Using a paper base, the researchers investigate dual-battery/energy-harvesting techniques with the goal of increasing lifespan and wireless range. With a transmission frequency of 904.4 MHz, the paper-based circuit houses a microcontroller unit (MCU) that encodes analog sensor data into an amplitude-shift-keying (ASK) modulated signal.

To impedance-match the RFID circuitry with the antenna, an impedance of 60-j74 Ω is the conjugate matched to the half-wave dipole antenna. The antenna structure is printed using silver nanoparticles. Wireless-link measurements are performed using a Tektronix real-time spectrum analyzer, the 30408A, and a UHF RFID reader antenna. Extrapolating the reading of -48.1 dBm at 4.26 m, the researchers estimated that the link’s effective range would be between 142 to 175 m. See “Inkjet-printed ‘Zero-Power’ wireless sensor and power management nodes for IoT and ‘Smart Skin’ applications,” 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Aug 2014, p. 1-4.

Sponsored Recommendations

Guide to VNA Automation in MATLAB Using the TCP Interface

April 19, 2024
In this guide, advantages of using MATLAB with TCP interface is explored. The how-to is also covered for setting up automation language using a CMT VNA.

In-Circuit Antenna Verification

April 19, 2024
In this video, Brian Walker, Senior RF Design Engineer at Copper Mountain Technologies, shows how there can be significant variation of the performance of a PCB-mounted antenna...

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...