Mwrf 1455 05i Fig 3promo 0

Dual-ISM-Band On-Body Antenna Relies on Textiles

June 25, 2014
Using miniaturization techniques, a dual-band textile wearable antenna for ISM-band operation was realized.

Textile-based wearable antennas could help to enable advanced solutions for firefighting, rescue systems, and embedded medical devices. For these antennas to avoid signal degradation and a high specific absorption rate (SAR), they often require an additional grounding structure or significant separation from the body. Recently, Sam Agneessens and Hendrik Rogier from Ghent University teamed to meet the small size, flexibility, performance, and feasibility requirements of on-body antennas. They designed and tested a half-mode-substrate integrated-waveguide (HWSIW) antenna that is capable of dual-ISM-band operation.

The antenna spans 2.4 to 2.5 GHz and 5.725 to 5.875 GHz in the industrial, scientific, and medical (ISM) bands. To meet regulatory requirements, it must satisfy certain criteria in terms of low weight, flexibility, and SAR. Other critical factors include robust electrical operation during movement, variations in body morphology, and a consistent radiation pattern. To reduce size and thus better facilitate these requirements, a cavity-backed slot antenna typology was chosen.

On-body antennas made of textiles with proper design techniques could maintain connections with vital medical equipment while limiting the radiation experienced by the wearer.

A virtual magnetic wall is used to compress the footprint. For more enhanced reduction, brass shorting pins are distributed evenly along the structure’s periphery. An additional slot is cut into the design to increase bandwidth at higher frequencies and fine-tune resonant behavior. The experimental results revealed a 4.9% and 5.1% measured bandwidth at the 2.4-GHz and 5.8-GHz bands. Maximum measured gains of 4.1 and 5.8 dBi were achieved. See “Compact Half Diamond Dual-Band Textile HMSIW On-Body Antenna,” IEEE Transactions on Antennas and Propagation, May 2014, p. 2374.

Sponsored Recommendations

Getting Started with Python for VNA Automation

April 19, 2024
The video goes through the steps for starting to use Python and SCPI commands to automate Copper Mountain Technologies VNAs. The process of downloading and installing Python IDC...

Introduction to Copper Mountain Technologies' Multiport VNA

April 19, 2024
Modern RF applications are constantly evolving and demand increasingly sophisticated test instrumentation, perfect for a multiport VNA.

Automating Vector Network Analyzer Measurements

April 19, 2024
Copper Mountain Technology VNAs can be automated by using either of two interfaces: a COM (also known as ActiveX) interface, or a TCP (Transmission Control Protocol) socket interface...

Guide to VNA Automation in MATLAB Using the TCP Interface

April 19, 2024
In this guide, advantages of using MATLAB with TCP interface is explored. The how-to is also covered for setting up automation language using a CMT VNA.