Professor Stavros Georgakopoulos with a prototype origami antenna. In regard to uses for the technology, Georgakopoulos said that it could potentially allow a soldier to carry a powerful antenna, folded into his back pocket, into combat. (Photo courtesy of FUI.)

Teams Apply Paper-Folding Techniques to Next-Generation Antennas

Jan. 31, 2014
Researchers are currently applying origami paper-folding principles to the development of antenna shapes that use self-activation mechanisms to unfold and provide ultra-broadband capabilities.

The traditional Japanese paper-folding art of origami is currently being applied to an entirely non-traditional idea: the creation of compact and efficient antennas. Researchers at Florida International University (FIU) and Georgia Technology Research Institute (GTRI) have joined forces to work toward the development of unique antenna shapes. When folded flat, they only take up a couple of centimeters. Yet these antennas can expand into much larger spaces to provide powerful, ultra-broadband capabilities.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicapable.

Support for this research is provided by a $2-million grant from the National Science Foundation. The teams are led by Stavros Georgakopoulos, assistant professor at FIU’s Department of Electrical and Computer Engineering, and Manos Tentzeris, a professor in the Georgia Tech School of Electrical and Computer Engineering. Like traditional origami, this approach uses paper. To create antenna elements with the necessary capabilities, an inkjet printing technique is used to deposit conductive materials, such as copper or silver, onto the paper. Other materials also are being explored for use, such as plastics, fabrics, carbon fibers, and flexible dielectrics and organics.

Professor Manos Tentzeris (right) and Ph.D. student Benjamin Cook (left) with an inkjet-printed, “zero-power” leaf wireless sensor that can sense and report ground water moisture content. (Photo courtesy of Rob Felt at Georgia Tech.)

Various self-activation mechanisms are being studied that would allow the antennas to rapidly unfold in response to incoming signals—without the use of electronics or electrical power. One potential solution—the harvesting of ambient electromagnetic energy in the air—has already shown promise. Tentzeris’ team recently demonstrated that antenna deployment could be powered by built-in circuits, which collect energy from ambient airborne signals provided by TVs and radios. Another potential approach uses chemicals that produce movement in ways that mimic nature, such as plants unfolding in response to light stimuli.

Currently, the teams are challenged by the need to maximize the number of shapes that can be achieved in a single folding structure. Mathematicians are developing derivatives of classic origami principles that could result in the formation of 16, 32, 64, or more different types of antennas from a single device that is less than one square inch when folded. The key advantage of collapsibility is ideal for a variety of applications where traditional, large-scale antennas are not an option. This includes a range of both military and commercial uses, such as communications equipment, wireless sensors, health-monitoring sensors, and portable medical equipment.

Sponsored Recommendations

Guide to VNA Automation in MATLAB Using the TCP Interface

April 19, 2024
In this guide, advantages of using MATLAB with TCP interface is explored. The how-to is also covered for setting up automation language using a CMT VNA.

In-Circuit Antenna Verification

April 19, 2024
In this video, Brian Walker, Senior RF Design Engineer at Copper Mountain Technologies, shows how there can be significant variation of the performance of a PCB-mounted antenna...

UHF to mmWave Cavity Filter Solutions

April 12, 2024
Cavity filters achieve much higher Q, steeper rejection skirts, and higher power handling than other filter technologies, such as ceramic resonator filters, and are utilized where...

Wideband MMIC Variable Gain Amplifier

April 12, 2024
The PVGA-273+ low noise, variable gain MMIC amplifier features an NF of 2.6 dB, 13.9 dB gain, +15 dBm P1dB, and +29 dBm OIP3. This VGA affords a gain control range of 30 dB with...