Simulation And Modeling Are Key To Auto-Antenna Success

Jan. 2, 2013
Modeling and simulation are critical to understanding and overcoming issues with multi-antenna configurations on today’s automotives and military vehicles.

Many factors can impact the effectiveness of the multi-antenna configurations implemented in today’s vehicles. Examples include blocking, reflecting or re-radiating energy, and co-site interference. In actual operating conditions, the motion of the vehicle platform and environmental factors like terrain and buildings also can reduce system effectiveness. In addition, radiation hazards may pose risks to nearby personnel. As explained in an eight-page white paper from Remcom, modeling and simulation are critical to understanding these issues and developing solutions that overcome them.

Titled “Using Simulation to Optimize Safety, Performance, and Cost Savings When Integrating an Antenna Onto a Platform,” the document explains that modeling and simulation can be used to assess options and tradeoffs. A small number of planned approaches can then be selected before any physical testing occurs. Modeling and simulation also eliminate the limitations of physical tests, such as the failure of a facility to handle the full range of frequencies for the system under test. With a comprehensive modeling and simulation toolset, any number of conditions can be simulated. Physical measurements can be used simply to confirm pre-test, simulation-based assessments.

To evaluate potential configurations until a successful option is identified, for instance, high-fidelity electromagnetic (EM) solvers can be used. Using the XFdtd software and an in-house ray-tracing tool, a radiation pattern has been simulated in free space without any vehicle or other obstruction to perturb the pattern. Once the antenna was mounted on a vehicle, that radiation pattern also was simulated. In this case, the antenna exhibited similar forward radiation and gain to the original design.

At higher frequencies, an electrically large scenario may require more computer memory or longer simulation times when performing an EM simulation. Here, a two-step hybrid approach may be used. The note cites an example in which the full-wave method from XFdtd determined the radiation pattern of the array on a metal groundplane. A solution based on the Uniform Theory of Diffraction (UFD) then calculated the radiation pattern resulting from mounting the array to the underside of the electrically large Global Hawk unmanned aerial vehicle (UAV).

Because military vehicles commonly incorporate several antenna systems in close proximity, interference between these systems can cause problems with simultaneous operation. Using simulation and power measurements, the power coupling between each transmit and receive antenna can be assessed to provide an idea of how much transmitted power propagates into the neighboring system. The paper ends by examining impact of the environment on antenna performance and potential radiation hazards. Overall, it builds a strong case for the use of EM modeling solutions to predict the performance of an antenna onto a vehicle platform—especially when intended for military operations.

Remcom, Inc., 315 S. Allen St., Ste. 416, State College, PA 16801; (814) 861-1299, www.remcom.com.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Wideband Peak & Average Power Sensor with 80 Msps Sample Rate

Aug. 16, 2024
Mini-Circuits’ PWR-18PWHS-RC power sensor operates from 0.05 to 18 GHz at a sample rate of 80 Msps and with an industry-leading minimum measurement range of -40 dBm in peak mode...

Turnkey Solid State Energy Source

Aug. 16, 2024
Featuring 59 dB of gain and output power from 2 to 750W, the RFS-G90G93750X+ is a robust, turnkey RF energy source for ISM applications in the 915 MHz band. This design incorporates...

90 GHz Coax. Adapters for Your High-Frequency Connections

Aug. 16, 2024
Mini-Circuits’ expanded line of coaxial adapters now includes the 10x-135x series of 1.0 mm to 1.35 mm models with all combinations of connector genders. Ultra-wideband performance...

Ultra-Low Phase Noise MMIC Amplifier, 6 to 18 GHz

July 12, 2024
Mini-Circuits’ LVA-6183PN+ is a wideband, ultra-low phase noise MMIC amplifier perfect for use with low noise signal sources and in sensitive transceiver chains. This model operates...