HIS Antenna System Tunes From 1.07 To 2.75 GHz

Jan. 4, 2013
A team of researchers has shown that an independently tunable, dual-band high impedance surface (HIS) can be used to realize an antenna system exhibiting the same independent tuning property as that HIS.

At the UK’s University of Sheffield, a cross bow-tie element has been created with a single-layer, dual-band, tunable high-impedance-surface (HIS) groundplane. To realize this independently tunable, low-profile antenna system in the ultra-high-frequency (UHF) band, the researchers—Hyung-Joo Lee, Kenneth Lee Ford, and Richard J. Langley—assembled it with a standard coplanar-waveguide (CPW) -fed, printed-circular-disc, wideband-monopole antenna. Yet a CPW-fed circular-patch monopole antenna is a poor radiator when positioned close to a conducting platform. It can be made to radiate more efficiently, however, with an HIS groundplane backing the antenna. By making that HIS groundplane tunable, the engineers surmised that they could also achieve a wider effective bandwidth.

The groundplane and wideband antenna were fabricated with 1SV245 varactor diodes from Toshiba. The antenna system showed an effective tunable bandwidth of roughly 0.9 to 2.8 GHz with dual-band capability. By performing simulations of the HIS groundplane, the researchers showed that either single- or dual-band reconfigurable reflection-phase resonances could be achieved between 0.95 and 2.45 GHz by controlling C1 (4.55 pF~0.6 pF) and C2 (4.55 pF~0.6 pF) independently. (These represent the two groups of varactor diodes mounted on the surface elements of the HIS.)

According to simulations performed with the wideband antenna 4 mm above the HIS groundplane, an effective, tunable operational bandwidth from 1.07 to 2.75 GHz is achievable with dual-band capability. Parametric studies show that the system’s radiation efficiency rises as the antenna height is increased and diode resistance is reduced. In addition, radiation efficiency rises with the general frequency over the tunable frequency range. With the optimum parameters, typical values from -4 to -2 dB can be achieved. Radiation efficiency can be further increased by using low-loss substrate materials. The proposed HIS groundplane features a unit cell measuring 19.71 by 19.71 mm and 1.74 mm thick. See “Independently Tunable Low-Profile Dual-Band High-Impedance Surface Antenna System for Applications in UHF Band,” IEEE Transactions On Antennas And Propagation, Sept. 2012, p. 4092.

Sponsored Recommendations

Designing Wireless Modular Robots Using Advanced 3D Printing Precision

March 28, 2024
Learn how researchers at Southern Methodist University used 3D printing to fabricate wireless modular robots.

Microelectromechanical 3D Printing Resources

March 28, 2024
Check out our curated list of microelectromechanical 3D printing resources and see how PµSL technology offers freedom and speed.

Understanding 3D Printing Tolerances: A Guide to Achieving Precision in Additive Manufacturing

March 28, 2024
In the world of additive manufacturing, precision is paramount. One crucial aspect of ensuring precision in 3D printing is understanding tolerances. In this article, we’ll explore...

Micro 3D Printing Helps Fabricate Microwells for Microgravity

March 28, 2024
Learn how micro 3D printing helped to fabricate miniaturized vessels called hydrowells for culturing 3D cellular spheroids for microgravity.